• Title/Summary/Keyword: Model reference tracking control

Search Result 188, Processing Time 0.031 seconds

Control of Two-Wheeled Welding Mobile Robot For Tracking a Smooth Curved Welding Path (완만한 곡선경로 추적용 이륜 용접이동로봇의 제어)

  • Ngo Manh Dung;Phuong Nguyen Thanh;Kim Hak-Kyeong;Kim Sang-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.85-86
    • /
    • 2006
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundary function is proposed and applied to a two-wheeled voiding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the new sliding is proposed to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system will be shown through the Lyapunov method. The simulations is shown to prove the effectiveness of the proposed controller.

  • PDF

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF

High precision tracking contorl algorithm for micro electrostatic actuator with nonlinearity (Nonlinearity를 갖는 Micro Electorstatic Actuator의 초정밀 추종제어)

  • 김경한;최현택;송재욱;정완균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.464-467
    • /
    • 1997
  • In this paper, a high precision track following control algorithm is proposed for micro electrostatic actuator considering of the application for hard disk drive. The micro electrostatic actuator proposed has nonlinear voltage-displacement characteristic in a working range of 0.8.mu.m and has uni-directional movement. Mid range reference and open-loop bias are proposed for the revision of negative position error, and inverse model for linearization.

  • PDF

Robust adaptive controller design for robot manipulator (로보트 매니퓰레이터에 대한 강건한 적응제어기 설계)

  • 안수관;배준경;박종국;박세승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.177-182
    • /
    • 1989
  • In this paper a new adaptive control algorithm is derived, with the unknown manipulator and payload parameters being estimated online. In practice, we may simplify the algorithm by not explicity estimating all unknown parameters. Further, the controller must be robust to residual time-varying disturbance, such as striction or torque ripple. Also, the reference model is a simple douple integrator and the acceleration input for robot manipulator consists of a proportion and derivative controller for trajectory tracking purposes. The validity of this control is confirmed in simulation where two-link robot manipulator shows the robust performances in spite of the existing nonlinear interaction and unknown parametrictings

  • PDF

Receding Horizon Control of a Parallel Hybrid Electric Vehicle (병렬형 하이브리드 차량의 동적 구간 제어)

  • Jean, Soon-Il;Kim, Ki-Back;Jo, Sung-Tae;Park, Yeong-Il;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.659-664
    • /
    • 2000
  • Fuel-consumption and catalyst-out emissions of a parallel hybrid electric vehicle are affected by operating region of an engine. In many researches, It is generally known that it is profitable in fuel- consumption to operate engine in OOL(Optimal Operating Line). We established the mathematical model of a parallel hybrid electric vehicle, which is linear time-invariant. To operate an engine in OOL, we applied RHC(Receding Horizon Control) to the driving control of a parallel hybrid electric vehicle. And it is known that the RHC has advantages such as good tracking performance under state and control constraints. This RHC is obtained by using linear matrix inequality (LMI) optimization. In this paper, there are three main topics. First, without state and control constraints, the optimal tracking of OOL was simulated. Second, with state and control constraints by engine and motor performances, the optimal tracking of OOL was simulated. In the last, we studied on the optimal gear ratio. That is to say, we combined the RHC and the iterative simulation to extract the optimal gear ratio. In this simulation, the vehicle is commanded to track the reference vehicle trajectory and the engine is operated in the optimal operating region which is made by the state constraints.

  • PDF

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot - Dynamic Model Approach -

  • Bui, Trong Hieu;Nguyen, Tan Tien;Suh, Jin-Ho;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2424-2426
    • /
    • 2002
  • This paper proposes an adaptive control method of partially known system and shows its application result to control for two-wheeled WMR. The controlled system is stable in the sense of Lyapunov stability. To design a tracking controller for welding path reference, an error configuration is defined and the controller is designed to drive the error to zero as fast as desired. Moments of inertia of system are considered to be unknown system parameters. Their values are estimated using update laws in adaptive control scheme. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

A Design of Reference Model Following Fuzzy Control System for Boiler-Turbine Equipment (보일러-터빈 설비에 대한 기준모델 추종 퍼지 제어시스템의 설계)

  • 정호성;황창선;황현준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.4
    • /
    • pp.82-91
    • /
    • 1997
  • In this paper, a design method of the boiler-turbine control system in the coal fired power plant is proposed. We need to control electric output and drum pressure and water level in drum to guarantee stable operation and save energy for generating electricity and decrease air pollution in the boiler-turbine system. This boiler-turbine control system is composed of reference model part and model following part. The multivariable boiler-turbine system is separated into 3 SISO(Single Input Single Output) systems applying the concept of relative gain matrix. Each 3 reference models for separated boiler-turbine system are composed of 1st order nominal plant and hysteresis integral control system and they make good dy¬namic response with no overshoot and fast rising time. Each fuzzy controller to follow as close as possible to the response of each reference model is designed. The robustness and the good tracking property can be achieved using 5150 fuzzy controllers when there are modeling errors, disturbances and parameter pertur¬bations. The effectiveness of the proposed design method is verified through simulations.

  • PDF

A design on model following control system of DC servo motor using GMDH algorithm (GMDH 알고리즘에 의한 직류 서보 전동기의 모델추종형 제어계 구성에 관한 연구)

  • 황창선;김문수;이양우;김동완
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1044-1047
    • /
    • 1996
  • In this paper, GMDH(Group Method of Data Handling) algorithm, which is based on heuristic self organization to predict and identify the complex system, is applied to the control system of DC servo motor. The mathematical relation between input voltage and motor speed is obtained by GMDH algorithm. A design method of model following control system based on GMDH algorithm is developed. As a result of applying this method to DC servo motor, the simulation and experiment have shown that the developed method gives a good performance in tracking the reference model and in rejection of disturbance, in spite of constant load and changing load.

  • PDF

A study on the Discrete-Time Adaptive Control for Robot Maninpulator (로보트 매니퓰레이터의 이산 시간 적응제어에 관한 연구)

  • Sung, Kwan-Young;Lee, Un-Cheol;Yoo, Jae-Guen;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.777-780
    • /
    • 1991
  • The practical implementation of model reference adaptive systems(MRAS) using digital computer requires the derivation of discrete-time adaptation laws. This is specially important in the case of direct driver robot and light weight manipulator where inertia changes ang gravity effects are significant. We develope a discrete-time model reference adaptive control scheme for trajectory tracking of robot manipulator. Instead of the conventional Lyapunov approach hyperstabillty theory is more appealing than the Lyapunov approach. It is better suited to discrete time systems and offers more flexibility in design by providing additional free design parameters.

  • PDF