This study analysed determinants of Foreign Direct Investment to ASEAN+ 3 member nations using panel data for which cross-sectional data are combined with time series data. The data for the analysis included the amount of FDI, GDP, and indexes of economic independence. This study collected data from six nations(Indonesia, Malaysia, Philippines, Singapore, Thailand, Vietnam) whose data were easily available, China and Japan from 2003 to 2007 and analysed them. The results are summarized as follows: Using the pooled OLS method, we found Model 2 had the highest explanatory power whose adjusted R-squared was 89.4%, which accounted for about 89% of foreign investment. Using the fixed effect model, Model 2 had the highest explanatory power whose adjusted R-squared was 96.8%, which accounted for about 97% of foreign investment. Using the probability effect model, Model 5 had the highest explanatory power, but in respect to its statistical significance, only GDP was 1% significant and the rest variables had no significance.
Journal of Fisheries and Marine Sciences Education
/
v.27
no.4
/
pp.998-1012
/
2015
This study is smartphone addiction impulsiveness, stress, self-efficacy, and examine any changes to appear self-control. This study is a response to the results obtained for 310 people targeting high school in Pusan, the second grade students. For the analysis of the collected data by using the SPSS 22.0 program was the analysis of the T-test, ANOVA, Multiple Regression. The major findings of this study can be summed up as follows: first, smart phone addiction has significant difference in impulsivity, stress, self-efficacy, and self-control. Second, sex is found to be significant in impulsivity, stress, self-efficacy, and self-control. Third, grades are significant in impulsivity, self-efficacy, and self-control. Fourth, the model for impulsivity indicates 4% of explanatory power, which is significant. Fifth, explanatory power for stress is 4%, which is significant. Sixth, the model for self-efficacy shows 14% of explanatory power, which is significant. Meanwhile, smart phone addiction, sex, and grades have no significant effects on self-efficacy. Seventh, the model for self-control indicates 20% of explanatory power, which is significant.
Journal of the Korean Data and Information Science Society
/
v.9
no.2
/
pp.263-273
/
1998
In this paper, we consider some approximate testings for the reliability of the stress-strength model when the stress X and strength Y each depends linearly on some explanatory variables z and w, respectively. We construct a bootstrap procedure for testing for various values of the reliability and compare the power of the bootstrap test with the test based on Mann-Whitney type estimator by Park et.al.(1996) for small and moderate sample size.
This study analyzed the changes in explanatory power of the modified Jones model(1995) for estimating the amount of accruals for Korean Stock Market listed companies from 1990 to 2019. We hypothesized that if the properties of financial variables used in the existing model change over time or change in discretionary ratios, the model's explanatory power will change. As the result of regression models, I found that the explanatory power of the modified Jones model(1995) gradually declined over time. The results may be derived from the increase in accruals itself and the changes in the distribution of variables contained in the model. The results of this research's chronological approach are expected to give important implications to both academic researchers and accounting information users.
The Journal of Korean Society for School & Community Health Education
/
v.10
no.2
/
pp.15-27
/
2009
Background and Goals: This study set out to apply the Theory of Planned Behavior (TPB), which is known to provide good explanations about human behavior, and test it to see if it could predict safety behavior by affecting the intention for safety behavior and perceived behavioral control and if intention for safety behavior would be influenced by attitude toward behavior, subjective norm, and perceived behavioral control. Methods: The subjects were 98 dental technology majors in D City. The questionnaires were distributed, filled out and collected on the spot. Each item was measured on a seven-point scale, and it's interpreted that the higher mean of each item would translate into safety behavior. Results: The analysis results of the Theory of Reasoned Action (TRA) variables indicate that only subjective norm ($\beta$ = .528, p < .000) had explanatory power of 27.2% (F = 37.170, P <.001) for intention for safety behavior. The results show that subjective norm and attitude toward behavior affect intention for safety behavior. The analysis results of the TPB variables revealed that intention for safety behavior had explanatory power of 26.6% (F = 36.072, p <.000) for behavior. When intention was added by perceived behavioral control, the explanatory power increased to 34.5% (F = 26.530, p <.000). And when it's added by knowledge, the explanatory power increased to 39.0% (F =21.661, p <.000). The results suggest that intention has the biggest influence on predicting safety behavior. Conclusion: The results show that the TPB model by Ajzen (1985) has greater forecasting power for intention and act of safety behavior than the TRA model by Fishbein & Ajzen (1980) and the TPB model can applied in the prediction of safety behavior. Thus safety behavior is considered as behavior whose determination control is limited. And safety education programs that add knowledge to the TPB variables will help the students promote their safety behavior.
Today freeway is experiencing a severe congestion with incoming or outgoing traffic through freeway ramps during the peak periods. Thus, the purpose of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the delay predictive models on the rap junctions of freeway with 70mph speed limit. From the traffic analyses, and model construction and verification for delay prediction on the ramp junctions of freeway, the following results were obtained : ⅰ) Traffic flow showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period. ⅱ) The occupancy also showed a big difference depending on the time periods, and the downstream occupancy(Od) was especially shown to have a higher explanatory power for the delay predictive model construction on the ramp junctions of freeway. ⅲ) The delay-occupancy curve showed a remarkable shift based on the occupancies observed : O$\_$d/〈9% and O$\_$d/$\geq$9%. Especially, volume and occupancy were shown to be highly explanatory for delay prediction on the ramp junctions of freeway under O$\_$d/$\geq$9%, but lowly for delay prediction on the ramp junctions of freeway under O$\_$d/〈9%. Rather, the driver characteristics or transportation conditions around the freeway were thought to be a little higher explanatory for the delay prediction under O$\_$d/〈9%. ⅳ) Integrated delay predictive models showed a higher explanatory power in the morning peak period, but a lower explanatory power in the non-peak periods.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
1999.10a
/
pp.131-140
/
1999
Today freeway is experiencing a severe congestion with incoming or outgoing traffic through freeway ramps during the peak periods. Thus, the objectives of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the delay predictive models on the ramp junctions of freeway with 70mph speed limit. From the traffic analyses, and model constructions and verifications for delay prediction on the ramp junctions of freeway, the following results were obtained: ⅰ) Traffic flow showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period when compared with the afternoon peak period. ⅱ) The occupancy also showed a big difference depending on the time periods, and the downstream occupancy(Od) was especially shown to have a higher explanatory power for the delay predictive model construction on the ramp junction of freeway. ⅲ) The speed-occupancy curve showed a remarkable shift based on the occupancies observed ; Od < 9% and Od$\geq$9%. Especially, volume and occupancy were shown to be highly explanatory for delay prediction on the ramp junctions of freeway under Od$\geq$9%, but lowly for delay predicion on the ramp junctions of freeway under Od<9%. Rather, the driver characteristics or transportation conditions around the freeway were through to be a little higher explanatory for the delay perdiction under Od<9%. ⅳ) Integrated delay predictive models showed a higher explanatory power in the morning peak period, but a lower explanatory power in the non-peak periods.
This paper proposes a new model as a framework for forecasting demand and technological substitution, which can accommodate different patterns of technological change. This model, which we named, "Adaptive Diffusion Model", is formalized from a conceptual framework that incorporates several underlying factors determining the market demand for technological products. The formulation of this model is given in terms of a period analysis to improve its explanatory power for dynamic processes in the real world, and is described as a continuous form which approximates a discrete derivation of the model. In order to illustrate the applicability and generality of this model, time-series data of the diffusion rates for some typical products in electronics and telecommunications market have been empirically tested. The results show that the model has higher explanatory power than any other existing model for all the products tested in our study. It has been found that this model can provide a framework which is sufficiently robust in forecasting demand and innovation diffusion for various technological products.
Technology Acceptance Model (TAM) has been a basis model for testing technology use. Post researches of TAM have been conducted with the updating the TAM by adding new independent variables in order to increase the explanatory power of the model. However, the problem is that different independent variables have to be required to keep the explanatory power whenever adopting particular technology. This might reduce the generality of the research model. Thus in order to increase the generality of the model, this study reviewed the previous researches and collected the independent variables used, and regrouped them into three basic independent constructs. New research model was designed with three basic independent constructs with three constructs selected for the involuntary information technology usage environment. Finally, this study concluded that new technology acceptance model could be used to explain the use of new technology without any adding new particular independent variables.
Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.