• Title/Summary/Keyword: Model equations

Search Result 5,723, Processing Time 0.025 seconds

Switching Pattern-Independent Simulation Model for Brushless DC Motors

  • Kang, Yong-Jin;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.173-178
    • /
    • 2011
  • In order to verify the performance of brushless DC (BLDC) motors, the simulation method has been widely used. The current of a BLDC motors flows on two phase windings to obtain a constant torque. However, the freewheeling current caused by the inductance component of a BLDC motor exists at the commutation point so that the current can flow on three phase windings at the same time. Due to the changes of the excited phases, the model equations are frequently changed during BLDC motor drive operation. The model equations can be also changed by the applied switching pattern since the current path in the inverter circuit changes according to switching pattern. A BLDC motor system can utilize various switching patterns for many different purposes. However, such changes of the model equations complicate the simulation procedure. In this paper, the technique to set up model equations is proposed to ease the simulation of a BLDC motor system through an inverter circuit analysis. The proposed technique will be verified using the C language. Although this method does not provide the level of detail obtainable from commercial simulation tools like PSIM or SIMULINK, it can provide an efficient way to quickly compare various conditions.

Measurement of Turbulent Wake behind a Self-Propelled SUBOFF Model and Derivation of Experimental Equations (자항하는 SUBOFF 모형 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.364-371
    • /
    • 2011
  • This paper presents experimental results and derived experimental equations to investigate the turbulent wake characteristics generated by the self-propelled SUBOFF submarine model. A self-propelled SUBOFF model which was assumed as an axial-symmetric body was used to create wake, and a thin strut was mounted on the topside of the model. The experiments were conducted in a circulating water channel(CWC), and the hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the time-averaged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, this paper presents derived experimental equations, which is extended result to the reference [1]. These experimental equations show well the general characteristics of the turbulent wake behind the self-propelled submerged body.

AN APPROPRIATE INFLOW MODEL FOR SIMULTANEOUS DISSOLUTION AND DEGRADATION

  • Lee, Ju-Hyun;Kang, Sung-Kwon;Choi, Hoo-Kyun
    • Honam Mathematical Journal
    • /
    • v.31 no.1
    • /
    • pp.109-124
    • /
    • 2009
  • Based on the observed data for Clarithromycin released, three commonly used inflow models: the power, the exponential, and the logarithmic models are considered. Among them, the power model is used most in practice for simplicity. Using the numerical parameter estimation techniques, the parameters appeared in the model equations are estimated. Through the numerical estimation results using the several experimental data sets, the exponential model turns out to be best among the three models. More specifically, the sum of squares of absolute errors and the sum of squares of relative errors for the exponential model are reduced by 80-95 % for the experimental data sets and 60-90 % for the noise added data sets compared with those for the power and logarithmic models. A typical experimental data set is used in this paper to show the estimation method and its numerical results. The proposed numerical method and its algorithm are designed for estimating the parameters appeared in the model differential equations for which the exact form of the solution is unknown in general. The methodology developed can be applied to more general cases such as the nonlinear ordinary differential equations or the partial differential equations.

The Macroeconomic Production Model in Business Environment - Analying with a Static and Dynamic Equations

  • Donghae LEE
    • Asian Journal of Business Environment
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • Purpose: The purpose of this research is to explore the macroeconomic model through both static and dynamic equations. The primary objective of this study is to investigate the variations in the elasticity of substitution across changing economic variables within the framework of the Allen-Uzawa production functions. Research, design, data and methodology: The data were drawn from the World Bank's annual central statistical office database from 2010 to 2021 in the United States of America. The level of expenditures and of the public finance sector, macroeconomic data like output, inflation rates, and labor are examined. Results: This study demonstrates the interaction of two equations, clarifying that the macroeconomic model is practical to determining the stability of both static and dynamic equation systems analytically. The Allen-Uzawa equations allow for the verification of macroeconomic model properties, and study results demonstrate an increase in the range of capital uses as a form of mechanization. A constant elasticity of substitution function is derived from the macroeconomic variables. Conclusion: The macroeconomic model, though the analysis of the static and dynamic Allen - Uzawa model, not only facilitates the examination of long-term trends in crucial endogenous variables but also overcomes challenges commonly associated with other mathematical methods. Overall, the analysis promotes economic growth, investment, and employment. The levels of expenditures and the public finance sector, along with macroeconomic data such as output, inflation rates, and labor, are examined.

Regression Equations for Estimating the TANK Model Parameters (TANK 모형 매개변수 추정을 위한 회귀식 개발)

  • An, Ji Hyun;Song, Jung Hun;Kang, Moon Seong;Song, Inhong;Jun, Sang Min;Park, Jihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.121-133
    • /
    • 2015
  • The TANK model has been widely used in rainfall-runoff modeling due to its simplicity of concept and computation while achieving forecast accuracy. A major barrier to the model application is to determine parameter values for ungauged watersheds, leading to the need of a method for the parameter estimation. The objective of this study was to develop regression equations for estimating the 3th TANK model parameters considering their variations for the ungauged watersheds. Thirty watersheds of dam sites and stream stations were selected for this study. A genetic algorithm was used to optimize TANK model parameters. Watershed characteristics used in this study include land use percent, watershed area, watershed length, and watershed average slope. Generalized equations were derived by correlating to the optimized parameters and the watershed characteristics. The results showed that the TANK model, with the parameters determined by the developed regression equations, performed reasonably with 0.60 to 0.85 of Nash-Sutcliffe efficiency for daily runoff. The developed regression equations for the TANK model can be applied for the runoff simulation particularly for the ungauged watersheds, which is common for upstream of agricultural reservoirs in Korea.

자동차 시트 및 마네킹 시스템의 자유 진동

  • Kim, Seong-Keol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.109-121
    • /
    • 2000
  • A simplified modeling approach of free vibration for occupied car seats was demonstrated to be feasible. The model consisting of interconnected masses springs and dampers was initially broken down into subsystems and experiments conducted to determine approximate values for model parameters. Which were each stiffness and damping value. Nonlinear equations of motion were derived and model parameters obtained in experiments were applied to these equations. A mathematical model of free vibration for car seat and mannequin system was built with 7 degrees of freedom. in order to calculate natural frequencies and the corresponding mode shapes. linear equations of motion were obtained through linearization. In order to explore the effects of each model parameter free vibration analysis were preformed.

  • PDF

Creep Behavior Analysis of High Cr Steel Using the Constitutive Model Based on Microstructure (미세조직기반 구성모델을 이용한 고크롬강의 크리프 거동 해석)

  • 윤승채;서민홍;백경호;김성호;류우석;김형섭
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • In order to theoretically analyze the creep behavior of high Cr steel at $600^{\circ}C$, a unified elasto-viscoplastic constitutive model based on the consideration of dislocation density is proposed. A combination of a kinetic equation describing the mechanical response of a material at a given microstructure in terms of dislocation glide and evolution equations for internal variables characterizing the microstructure provides the constitutive equations of the model. Microstructural features of the material such as the grain size and spacing between second phase particles are directly implemented in the constitutive equations. The internal variables are associated with the total dislocation density in a simple model. The model has a modular structure and can be adjusted to describe a creep behavior using the material parameters obtained from uniaxial tensile tests.

Generalization of Integration Methods for Complex Inelastic Constitutive Equations with State Variables (상태변수를 갖는 비탄성 구성식 적분법의 일반화)

  • Yun, Sam-Son;Lee, Sun-Bok;Kim, Jong-Beom;Lee, Hyeong-Yeon;Yu, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1075-1083
    • /
    • 2000
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method. The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

Students' Conceptual Metaphor of Differential Equations: A Sociocultural Perspective on the Duality of the Students' Conceptual Model (학생들의 미분방정식 개념에 대한 수학적 은유의 분석: 개념적 모델의 이중성에 대한 사회문화적 관점)

  • 주미경;권오남
    • School Mathematics
    • /
    • v.5 no.1
    • /
    • pp.135-149
    • /
    • 2003
  • We present an understanding about students' conceptual model of differential equations, based on the discourse data that were collected in a differential equations course at a university in Korea. An interpretive approach is taken to analyze classroom discourse. This paper consists of three main parts. First, we completely analyze the students' use of conceptual metaphor in a university differential equations class. Secondly, we identify conceptual metaphors representing students' conceptual model of differential equations. Finally, we describe the mathematical characteristics of the conceptual metaphors identified in detail. Among other things, this paper reveals that there exists dual aspects of the students' conceptual model of differential equations. In other words, in the differential equations course observed we found that the students very often used two kinds of conceptual metaphor,“machine metaphor”and“fictive motion metaphor”, that have contrastingly different mathematical characteristics. In order to interpret the duality, we take a sociocultural perspective, and this perspective suggests and helps us to realize the significance of understanding of cognitive diversity in mathematics classroom.

  • PDF