• 제목/요약/키워드: Model compression

검색결과 1,797건 처리시간 0.026초

광섬유 센서에 의한 말뚝 하중전이 측정 (Measurement of Pile Load Transfer using Optical Fiber Sensors)

  • 오정호;이원제;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

중간 결과값 연산 모델을 위한 2차원 DCT 구조 (Two-dimensional DCT arcitecture for imprecise computation model)

  • 임강빈;정진군;신준호;최경희;정기현
    • 전자공학회논문지C
    • /
    • 제34C권9호
    • /
    • pp.22-32
    • /
    • 1997
  • This paper proposes an imprecise compuitation model for DCT considering QOS of images and a two dimensional DCT architecture for imprecise computations. In case that many processes are scheduling in a hard real time system, the system resources are shared among them. Thus all processes can not be allocated enough system resources (such as processing power and communication bandwidth). The imprecise computtion model can be used to provide scheduling flexibility and various QOS(quality of service)levels, to enhance fault tolerance, and to ensure service continuity in rela time systems. The DCT(discrete cosine transform) is known as one of popular image data compression techniques and adopted in JPEG and MPEG algorithms since the DCT can remove the spatial redundancy of 2-D image data efficiently. Even though many commercial data compression VLSI chips include the DCST hardware, the DCT computation is still a very time-consuming process and a lot of hardware resources are required for the DCT implementation. In this paper the DCT procedure is re-analyzed to fit to imprecise computation model. The test image is simulated on teh base of this model, and the computation time and the quality of restored image are studied. The row-column algorithm is used ot fit the proposed imprecise computation DCT which supports pipeline operatiions by pixel unit, various QOS levels and low speed stroage devices. The architecture has reduced I/O bandwidth which could make its implementation feasible in VLSI. The architecture is proved using a VHDL simulator in architecture level.

  • PDF

Modelling of Low Velocity Impact Damage In Laminated Composites

  • Lee Jounghwan;Kong Changduk;Soutis Costas
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.947-957
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate avoiding the need of the time-consuming dynamic finite element method (FEM). The analytical model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that oc curred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay

  • Karunawardena, Asiri;Oka, Fusao;Kimoto, Sayuri
    • Geomechanics and Engineering
    • /
    • 제3권3호
    • /
    • pp.233-254
    • /
    • 2011
  • The consolidation behavior of Sri Lankan peaty clay is analyzed using an elasto-viscoplastic model. The model can describe the secondary compression behavior as a continuous process and it can also account for the effect of structural degradation on the consolidation analysis. The analysis takes into account all the main features involved in the process of peat consolidation, namely, finite strain, variable permeability, and the secondary compression. The material parameters required for the analysis and the procedures to evaluate them, using both standard laboratory and field tests, are explained. Initially, the model performance is assessed by comparing the predicted and the observed peat consolidation behavior under laboratory conditions. The results indicate that the model is capable of predicting the observed creep settlements and the effect of layer thickness on the settlement analysis of peaty clay. Then, the model is applied to predict the consolidation behavior of peaty clay under different field conditions. In this context, firstly, the one-dimensional field consolidation of peaty clay, brought about by the construction of compacted earth fill, is predicted. Then, the two-dimensional peat foundation response upon embankment loading is simulated. A good agreement is seen in the comparison of the predicted results with the field observations.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Consolidation settlement of soil foundations containing organic matters subjected to embankment load

  • Feng, Ruiling;Wang, Liyang;Wei, Kang;Zhao, Jiacheng
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.43-55
    • /
    • 2021
  • Peatland is distributed in China widely, and organic matters in soil frequently induce problems in the construction and maintenance of highway engineering due to the high permeability and compressibility. In this paper, a selected site of Dali-Lijiang expressway was surveyed in China. A numerical model was built to predict the settlement of the foundation of the selected section employing the soft soil creep (SSC) model in PLAXIS 8.2. The model was subsequently verified by the result of field observance. Consequently, the parameters of 17 types of soils from different regions in China with organic contents varying from 1.1-74.9% were assigned to the numerical model to study the settlement characteristics. The calculated results showed that the duration of primary consolidation and proportion of primary settlement in the total settlement decreased with increasing organic content. Two empirical equations, for total consolidation settlement and secondary settlement, were proposed using multiple linear regression based on the calculated results from the numerical models. The analysis results of the significances of certain soil parameters demonstrated that the natural compression index, secondary compression index, cohesion and friction angle have significant linear relevance with both the total settlement and secondary settlement, while the initial coefficient of permeability exerts significant influence on the secondary settlement only.

Mechanical damage evolution and a statistical damage constitutive model for water-weak sandstone and mudstone

  • Lu yuan Wu;Fei Ding;Jian hui Li;Wei Qiao
    • Geomechanics and Engineering
    • /
    • 제38권1호
    • /
    • pp.45-56
    • /
    • 2024
  • The weakening effect of water on rocks is one of the main factors inducing deformation and failure in rock engineering. To clarify this weakening effect, immersion tests and post-immersion triaxial compression tests were conducted on sandstone and mudstone. The results showed that the strength of water-immersed sandstone decreases with increasing immersion time, exhibiting an exponential relationship. Similarly, the strength of water-immersed mudstone decreases with increasing environmental humidity, also following an exponential relationship. Subsequently, a statistical damage model for water-weakened rocks was proposed, changes in elastic modulus to describe the weakening effect of water. The model effectively simulated the stress-strain relationships of water-affected sandstone and mudstone under compression. The R2 values between the theoretical and experimental peak values ranged from 0.962 to 0.996, and the MAPE values fell between 3.589% and 9.166%, demonstrating the model's effectiveness and reliability. The damage process of water-saturated rocks corresponds to five stages: compaction stage - no damage, elastic stage - minor damage, crack development stage - rapid damage increase, post-peak residual stage - continuous damage increase, and sliding stage - damage completion. This study provides a foundational reference for researching the fracture characteristics of overlying strata during coal mining under complex hydrogeological conditions.

GaAs MESFET의 새로운 드레인 전류 모델 (A new drian-current model kof GaAs MESFET)

  • 조영송;신철재
    • 전자공학회논문지A
    • /
    • 제32A권8호
    • /
    • pp.64-70
    • /
    • 1995
  • A new DC drain-current model of GaAs MESFET with improved accuracy is proposed in this paper. The proposed model includes the decrease of current slope according to gate voltages. It is possible to represent a transconductance compression using the proposed model. It shows improved transconductance and output resistance in accuracy from the forward biased gate region to near the cutoff region. The wquaer error of saturation current is decreased by 46% compared with Statz model. The proposed model can be useful for the simulation of large-signal operation and harmonic distortion.

  • PDF

자동차용 시트 폼의 시간 의존적 거동 예측을 위한 수치해석 (Numerical Analysis to Predict the Time-dependent Behavior of Automotive Seat Foam)

  • 강건;오정석;최권용;김대영;김헌영
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.104-112
    • /
    • 2014
  • Generally, numerical approaches of evaluation for vehicle seat comfort have been studied without considering time-dependent characteristics and the only seating moment have been considered in seat design. However, the comfort not only at the seating moment but also in the long-term should be evaluated because the passengers are sitting repeatedly on the seat to drive the vehicle for hours. So, the aim of this paper is to carry out a quantitative evaluation of the time-dependent mechanical characteristics of seat foams and to suggest a process for predicting the viscoelastic deformation of seat foam in response to long-term driving. To characterize the seat materials, uniaxial compression and tension tests were carried out for the seat foam and stress relaxation tests were performed for evaluating the viscoelastic behavior of the seat foam. A unit solid element model was used to verify the reliability of the material model with respect to the compression behavior of the seat foam. It is not straightforward to evaluate the time-dependent compression of foams using the explicit solver because the viscoelastic material model is limited. To use the explicit solver, the material model must be modified using stress-degradation data. Normalized stress relaxation moduli were added to the stress-strain curves obtained under static conditions to achieve a time-dependent set of stress-strain relations that were compatible with the implicit solver. There was good agreement between the analysis results and experimental data.

벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프- (Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel-)

  • 김만수;김성래;박종민
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF