• Title/Summary/Keyword: Model compression

Search Result 1,792, Processing Time 0.028 seconds

A damage model formulation: unilateral effect and RC structures analysis

  • Pituba, Jose J.C.
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.709-733
    • /
    • 2015
  • This work deals with a damage model formulation taking into account the unilateral effect of the mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the good performance of the modelling and its potentialities to simulate practical problems in structural engineering.

Development of Concrete Material Model for Nonlinear Analysis of Nuclear Containment Building (원전 격납건물 비선형 해석을 위할 콘크리트 재료모델 개발)

  • 이홍표;전영선;서정문;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.312-319
    • /
    • 2004
  • This paper is mai y focused to develop new concrete material model such as ultimate failure surface in compression-compression region, hardening rule and cracking criteria which are basically used in the nonlinear finite element analysis of nuclear prestressed concrete containment building. From the Kepri's experimental results, failure surface of the concrete based on the elasto-plastic material model is modified and new cracking criteria is proposed. Nonlinear FE analysis program using a new material model is implemented to analysis plane concrete. Finally, numerical simulation to compare the performance of the new material model with experimental results is employed. The numerical results by the proposed model in this study agree very well with the experimental data.

  • PDF

Finite Element Analysis for Rate-Independent Crystal Plasticity Model (속도 독립성 결정소성모델의 유한요소해석)

  • Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.447-454
    • /
    • 2009
  • Rate-independent crystal plasticity model suffers from the non-uniqueness of activated slip systems and the determination of the shear slip rates on the active slip systems. In this paper, a time-integration algorithm which circumvents the problem of the multiplicity of the slip systems was developed and implemented into the user subroutine VUMAT of a commercial finite element program ABAQUS. The magnitude of the slip shears on the active slip systems in f.c.c Cu single crystal aligned with the specific crystallographic orientation was investigated to validate our solution procedure. Also, texture developments under various deformation modes such as simple compression, simple tension and plane strain compression were compared with the results of the rate-dependent model by using the rate-independent crystal plasticity model. The computation time employing the rate-independent model is much more reduced than the those of the rate-dependent model.

Computationally Efficient and Accurate Simulation of Cyclic Behavior for Rectangular HSS Braces

  • Lee, Chang Seok;Sung, Min Soo;Han, Sang Whan;Jee, Hyun Woo
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1125-1138
    • /
    • 2018
  • During earthquakes, braces behave in complex manners because of the asymmetric response nature of their responses in tension and compression. Hollow structural sections (HSS) have been popularly used for braces due to their sectional efficiency in compression. The purpose of this study is to accurately simulate the cyclic behavior of rectangular HSS braces using a computationally efficient numerical model. A conceptually efficient and simple physical theory model is used as a basis model. To improve the accuracy of the model, cyclic beam growth and buckling load, as well as the incidences of local buckling and brace fracture are estimated using empirical equations obtained from regression analyses using test data on rectangular HSS braces. The accuracy of the proposed model is verified by comparing actual and simulated cyclic curves of brace specimens with various slenderness and width-to-thickness ratios.

Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine

  • Kim, Hyunguk;Yongseob Lim;Kyoungdoug Min;Lee, Daeyup
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1127-1134
    • /
    • 2002
  • The effects of pressure and temperature on the autoignition of propane and n-butane blends were investigated using a rapid compression machine (RCM) , which is widely used to examine the autoignition characteristics. The RCM was designed to be capable of varying the compression ratio between 5 and 20 and minimize the vortex formation on the cylinder wall using a wedge-shaped crevice. The initial temperature and pressure of the compressed gas were varied in range of 720∼900 K and 1.6∼ 1.8 MPa, respectively, by adjusting the ratio of the specific heat of the mixture by altering the ratio of the non-reactive components (N$_2$, Ar) under a constant effective equivalence ratio (ø$\_$f/= 1.0) The gas temperature after the compression stroke could be obtained from the measured time-pressure record. The results showed a two-stage ignition delay and a Negative Temperature Coefficient (NTC) behavior which were the unique characteristic of the alkane series fuels. As the propane concentration in the blend were increased from 20% and 40% propane, the autoignition delay time increased by approximately 41 % and 55% at 750 K. Numerical reduced kinetic modeling was performed using the Shell model, which introduced some important chemical ideas, represented by the generic species. Several rate coefficients were calibrated based on the experimental results to establish an autoignition model of the propane and n-butane blends. These coefficients can be used to predict the autoignition characteristics in LPG fueled Sl engines.

The Intracisternal Administration of MEK Inhibitor Attenuates Mechanical and Cold Allodynia in a Rat Model of Compression of the Trigeminal Ganglion

  • Lee, Min-K.;Yoon, Jeong-H.;Park, Min-K.;Yang, Gwi-Y.;Won, Kyung-A.;Park, Yoon-Yub;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.75-81
    • /
    • 2010
  • The present study investigated the role of ERK in the onset of mechanical and cold allodynia in a rat model of compression of the trigeminal ganglion by examining changes in the air-puff thresholds and number of scratches following the intracisternal injection of PD98059, a MEK inhibitor. Male Sprague Dawley rats weighing between 250 and 260 g were used. Under anesthesia, the rats were mounted onto a stereotaxic frame and received 4% agar ($10\;{\mu}l$) solution to compress the trigeminal ganglion. In the control group, the animals were given a sham operation without the application of agar. Changes in behavior were examined at 3 days before and at 3, 7, 10, 14, 17, 21, 24, 30, and 40 days after surgery. Compression of the trigeminal ganglion significantly decreased the air-puff thresholds. Mechanical allodynia was established within 3 days and persisted over postoperative day 24. To evaluate cold allodynia, nociceptive scratching behavior was monitored after acetone application on the vibrissa pad of the rats. Compression of the trigeminal ganglion was found to produce significant cold allodynia, which persisted for more than 40 days after surgery. On postoperative day 14, the intracisternal administration of $1\;{\mu}g$ or $10\;{\mu}g$ of PD98059 in the rat model significantly decreased the air-puff thresholds on both the ipsilateral and contralateral side. The intracisternal administration of $10\;{\mu}g$ of PD98059 also significantly alleviated the cold allodynia, compared with the vehicle-treated group. These results suggest that central ERK plays an important role in the development of mechanical and cold allodynia in rats with compression of the trigeminal ganglion and that a targeted blockade of this pathway is a potential future treatment strategy for trigeminal neuralgia-like nociception.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Numerical analysis and eccentric bearing capacity of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Liu, Fangda;Wu, Yanan;Cui, Hang;Zhao, Yanli
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.163-181
    • /
    • 2022
  • To study the mechanical properties of steel reinforced recycled concrete (SRRC) filled circular steel tube columns under eccentric compression loads, this study presents a finite element model which can simulate the eccentrically compressed columns using ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of materials in the columns. The influences of design parameters on the eccentric compressive performance of columns were also considered in detail, such as the diameter-thickness ratio of circular steel tube, replacement percentage of recycled coarse aggregate (RCA), slenderness ratio, eccentricity, recycled aggregate concrete (RAC) strength and steel strength and so on. The deformation diagram, stress nephogram and load-displacement curves of the eccentrically compressed columns were obtained and compared with the test results of specimens. The results show that although there is a certain error between the calculation results and the test results, the error is small, which shows the rationality on the numerical model of eccentrically compressed columns. The failure of the columns is mainly due to the symmetrical bending of the columns towards the middle compression zone, which is a typical compression bending failure. The eccentric bearing capacity and deformation capacity of columns increase with the increase of the strength of steel tube and profile steel respectively. Compared with profile steel, the strength of steel tube has a greater influence on the eccentric compressive performance of columns. Improving the strength of RAC is beneficial to the eccentric bearing capacity of columns. In addition, the eccentric bearing capacity and deformation capacity of columns decrease with the increase of replacement percentage of RCA. The section form of profile steel has little influence on the eccentric compression performance of columns. On this basis, the calculation formulas on the nominal eccentric bearing capacity of columns were also put forward and the results calculated by the proposed formulas are in good agreement with the test values.

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

3D Model Compression For Collaborative Design

  • Liu, Jun;Wang, Qifu;Huang, Zhengdong;Chen, Liping;Liu, Yunhua
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The compression of CAD models is a key technology for realizing Internet-based collaborative product development because big model sizes often prohibit us to achieve a rapid product information transmission. Although there exist some algorithms for compressing discrete CAD models, original precise CAD models are focused on in this paper. Here, the characteristics of hierarchical structures in CAD models and the distribution of their redundant data are exploited for developing a novel data encoding method. In the method, different encoding rules are applied to different types of data. Geometric data is a major concern for reducing model sizes. For geometric data, the control points of B-spline curves and surfaces are compressed with the second-order predictions in a local coordinate system. Based on analysis to the distortion induced by quantization, an efficient method for computation of the distortion is provided. The results indicate that the data size of CAD models can be decreased efficiently after compressed with the proposed method.