Browse > Article
http://dx.doi.org/10.12989/cac.2015.15.5.709

A damage model formulation: unilateral effect and RC structures analysis  

Pituba, Jose J.C. (Department of Civil Engineering, Campus Catalao, Federal University of Goias)
Publication Information
Computers and Concrete / v.15, no.5, 2015 , pp. 709-733 More about this Journal
Abstract
This work deals with a damage model formulation taking into account the unilateral effect of the mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the good performance of the modelling and its potentialities to simulate practical problems in structural engineering.
Keywords
damage mechanics; unilateral effect; concrete structures; structural failure; constitutive model;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Araujo, F.A. and Proenca, S.P.B. (2008), "Application of a lumped dissipation model to reinforced concrete structures with the consideration of residual strains and cycles of hysteresis", J. Mech. Mater. Struct., 3(5), 1011-1031.   DOI
2 Bielski, J., Skrzypek, J.J. and Kuna-Cisal, H. (2006), "Implementation of a model of coupled elastic-plastic unilateral damage material to finite element code", Int. J. Damage Mech., 15(1), 5-39.   DOI
3 Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotrtopic continuum-discrete damage model capable of representing localized failure of massive structures. Part I: theoretical formulation and numerical implementation", Eng. Comput., 26(1-2), 100-127.   DOI
4 Brunig, M. (2004), "An anisotropic continuum damage model: theory and numerical analyses", Lat. Am. J .Solids Struct., 1(2), 185-218.
5 Cao, V.V. and Ronagh, H.R. (2013), "A model of damage analysis of concrete", Adv. Concr. Constr., 1(2), 187-200.   DOI
6 Carol, I. and Willam, K. (1996), "Spurious Energy dissipation/generation in stiffness recovery models for elastic degradation and damage", Int. J. Solids Struct., 33, 239-257.
7 Pituba, J.J.C. (2006), "On the formulation of damage constitutive models for bimodular anistropic media". (Ed., C.A.M. Soares) European conference on computational mechanics, 3rd Ed. Springer, 371. DOI: 10.1007/1-4020-5370-3_371.   DOI
8 Pituba, J.J.C. (2010), "Validation of a damage model for the non linear analysis of reinforced concrete structures", Acta Sci. Technol., 32(3), 251-259. DOI: 10.4025/actascitechnol.v32i3.7009.   DOI
9 Pituba, J.J.C. and Fernandes, G.R. (2011), "An anisotropic damage model for concrete", J. Eng. Mech. - ASCE, 137(9), 610-624. DOI: 10.1061/(ASCE)EM.1943-7889.0000260.   DOI
10 Pituba, J.J.C. and Lacerda, M.M.S. (2012), "Simplified damage models applied in the numerical analysis of reinforced concrete structures", Rev. IBRACON Estrut. Mater., 1, 26-37.
11 Pituba, J.J.C., Delalibera, R.G. and Rodrigues, F.S. (2012), "Numerical and statistical analysis about displacements in reinforced concrete beams using damage mechanics", Comput Concr., 10(3), 307-330.   DOI
12 Pituba, J.J.C. and Souza Neto, E. A. (2012), "Characterization of macroscopic mechanical behavior of concrete with mesoscopic scale finite element analysis", (Eds., J. Eberhardsteiner, H.J. Bohm, F.G. Rammerstorfer), European Congress on Computational Methods in Applied Sciences and Engineering, Vienna University of Technology, Viena, ISBN: 978-3-9502481-9-7.
13 Skarzynski, L. and Tejchman, J. (2012), "Determination of representative volume element in concrete under tensile deformation", Comput Concr., 9(1), 35-50.   DOI
14 Van Mier, G. M. (1997), Fracture Process of Concrete, CRC Press, Zurich, Switzerland.
15 Vecchio, F.J. and Emara, M.B. (1992), "Shear deformations in reinforced concrete frames", ACI Struct. J., 89(1), 46-56.
16 Desmorat, R. (2000), "Strain localization and unilateral conditions for anisotropic induced damage model", Proceedings of the Continuous Damage and Fracture, Cachan.
17 Cauvin, A. and Testa, R.B. (1999), "Damage mechanics: basic variables in continuum theories", Int. J. Solids Struct., 36, 747-761.   DOI
18 Comi, C. (2001), "A non-local model with tension and compression damage mechanisms", Eur. J. Mech. A-Solid. 20, 1-22
19 Curnier, A., He, Q. and Zysset, P. (1995), "Conewise linear elastic materials", J. Elasticity, 37(1), 1-38.   DOI
20 Deude, V., Dormieux, L., Kondo, D. and Maghous, S. (2002), "Micromechanical apprroach to nonlinear poroelasticity: application to cracked rocks", J. Eng. Mech. - ASCE., 128, 848-855.   DOI
21 Esposito, R. and Hendriks, M.A.N. (2014), "Computational modelling of concrete and concrete structures", Proceedings of the EURO-C International Conference of Computational Modelling of Concrete and Concrete Structures, London.
22 Fernandes, G.R., Pituba, J.J.C. and Souza Neto, E.A. (2015), "Multi-scale modelling for bending analysis of heterogeneous plates by coupling BEM and FEM", Eng. Anal. Bound. Elem., 51, 1-13. http://dx.doi.org/10.1016/j.enganabound.2014.10.005   DOI
23 Herve, G., Gatuingt, F. and Ibrahimbegovic, A. (2005), "On numerical implementation of a coupled rate dependent damage-plasticity constitutive model for concrete in application to high-rate dynamics", Eng. Comput., 22(5-6), 583-604.   DOI
24 Ibrahimbegovic, A., Jehel, P. and Davenne, L. (2008), "Coupled damage-plasticity constitutive model and direct stress interpolation", Comput. Mech., 42(1), 1-11.   DOI
25 Zhu, Q., Kondo, D. and Shao, J. (2009), "Homogenization-based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks", Int. J. Numer. Anal. Met., 33(6), 749-772.   DOI
26 Welemane, H. and Cormery, F. (2002), "Some remarks on the damage unilateral effect modeling for microcracked materials", Int. J. Damage Mech., 11(1), 65-86.   DOI
27 Willam, K., Stankowski, T. and Sture, S. (1988), "Theory and basic concepts for modelling concrete behaviour", Contribution to the 26th CEB Plenary Session, Dubrovnik.
28 Zhu, Q., Kondo, D., Shao, J. and Pensee, V. (2008), "Micromechanical modelling of anisotropic damage in brittle rocks and application", Int. J. Rock Mech. Min., 45(4), 467-477.   DOI
29 Kupfer, H., Hilsdorf, H. K. and Rush, H. (1969), "Behavior of concrete under biaxial stresses", ACI J., 66(8), 656-666.
30 Kucerova, A., Brancherie, D., Ibrahimbegovic, A., Zeman, J. and Bittnar, Z. (2009), "Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: Part II: identification from tests under heterogeneous stress field", Eng. Comput., 26(1-2), 128-144.   DOI
31 La Borderie, C. (1991), "Phenomenes unilateraux dans un materiau endommageable: modelisation et application a l'analyse de structures en beton", Ph. D. Dissertation, University of Paris 6, France.
32 Lemaitre, J. (1996), A Course on Damage Mechanics, Springer Verlag, Berlin, Germany.
33 Lemaitre, J., Desmorat, R. and Sauzay, M. (2000), "Anisotropic damage law of evolution", Eur. J. Mech. A-Solid, 19(2), 187-208.   DOI
34 Liu, Y., Teng, S. and Soh, C. (2008), "Three-dimensional damage model for concrete. II: verification", J. Eng. Mech. -.ASCE., 132, 82-89.
35 Matallah, M. and La Borderie, C. (2009), "Inelasticity-damage-based model for numerical modeling of concrete cracking", Eng. Fract. Mech., 76, 1087-1108.   DOI
36 Mohammed, T.A. and Parvin, A. (2013), "Evaluating damage scale model of concrete materials using test data", Adv. Concr. Constr., 1(4), 289-304.   DOI
37 Pensee, V., Kondo, D. and Dormieux, L. (2002), "Micromechanical Analysis of Anisotropic damage in Brittle Materials", J. Eng. Mech. - ASCE., 128, 889-897.   DOI
38 Pichler, B. and Dormieux, L. (2009), "Instability during cohesive zone growth", Eng. Fract. Mech., 76(11), 1729-1749.   DOI