The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.
The purpose of this study was to evaluate effects of spatio-temporal changes in land uses and rainfall magnitude using the Soil and Water Assessment Tool (SWAT). Prior of application of the model to real-world problem, the model should be calibrated and validated properly. In most modeling approaches, the validation process is done assuming no significant changes occurring at the study watershed between calibration and validation periods, which is not proper assumption for agricultural watersheds. If simulated results obtained with calibrated parameters match observed data with higher accuracy for validation period, this does not always mean the simulated result represents rainfall-runoff, pollutant generation and transport mechanism for validation period because temporal and spatial variables and rainfall magnitude are often not the same. In this study SWAT was applied to Mandae study watershed in Korea to evaluate effects of spatio-temporal changes in landuses using 2009 and 2010 crop data for each field at the watershed. The Nash-Sutcliffe model efficiency (NSE) values for calibration and validation with either 2009 or 2010 was evaluated and the NSE value for calibration with 2009 and calibration with 2010 were compared. It was found that if there is substantial change in land use and rainfall, model calibration period should be determined to reflect those changes. Through these approaches, inherent limitation of the SWAT, which does not consider changes in land uses over the simulation period, was investigated. Also, Effects of changes in rainfall magnitude during calibration process were analyzed.
Proceedings of the Korea Society for Industrial Systems Conference
/
2000.05a
/
pp.135-143
/
2000
The COCOMO Ⅱ model is well-suited for the new software development life cycle such as non-sequential and rapid-development processes. The traditional regression approach based on the least square criterion is the most commonly used technique for empirical calibration in the COCOMO Ⅱ model. But it has a few assumptions frequently violated by software engineering data sets. It is true that the source data is also generally imprecise in reporting size, effort, and cost-driver ratings, particularly across different organizations. And that the outlier for the source data is a peculiarity and indicates a data pint To cope with difficulties, in this paper, we propose a new regression method for calibrating COCOMO Ⅱ post-architecture model based on the minimum relative erro(MRE) criterion. The characteristic of the proposed method is insensitive to the extreme values of the data in the empirical calibration. As the experimental results, It is evident that our proposed calibration method MRE was shown to be superior to the traditional regression approach for model calibration, as illustrated by the values obtained for standard deviation(^σ), and prediction at level L PRED(L) measures.
Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.1
/
pp.34-40
/
2005
In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.
Cerebellar Model Linear Associator Net(CMLAN), a kind of neuro-net based adaptive control function generator, was applied to the problem of direct inverse calibration of three and six d.o.f. POMA 560 robot. Since CMLAN autonomously maps and generalizes a desired system function via learning on the sampled input/output pair nodes, CMLAN allows no knowledge in system modeling and other error sources. The CMLAN based direct inverse calibration avoids the complex procedure of identifying various system parameters such as geometric(kinematic) or nongeometric(dynamic) ones and generates the corresponding desired compensated joint commands directly to each joint for given target commands in the world coordinate. The generated net outputs automatically handles the effect of unknown system parameters and dynamic error sources. On-line sequential learning on the prespecified sampled nodes requires only the measurement of the corresponding tool tip locations for three d.o.f. manipulator but location and orientation for six d.o.f. manipulator. The proposed calibration procedure can be applied to any robot.
Transactions on Electrical and Electronic Materials
/
v.5
no.5
/
pp.180-184
/
2004
This paper proposes a novel methodology of systematic global calibration and validates its accuracy and efficiency with application to memory and logic devices. With 175 SIMS profiles which cover the range of conditions of implant and diffusion processes in the fabrication lines, the dominant diffusion phenomenon in each process temperature region has been determined. Using the dual-pearson implant model and fully-coupled diffusion model, the calibration was performed systematically. We applied the globally calibrated process simulator parameters to memory and logic devices to predict the optimum process conditions for target device characteristics.
Purpose: This study was aimed to evaluate the external validity of a carbapenem-resistant Enterobacteriaceae (CRE) acquisition risk prediction model (the CREP-model) in a medium-sized hospital. Methods: This retrospective cohort study included 613 patients (CRE group: 69, no-CRE group: 544) admitted to the intensive care units of a 453-beds secondary referral general hospital from March 1, 2017 to September 30, 2019 in South Korea. The performance of the CREP-model was analyzed with calibration, discrimination, and clinical usefulness. Results: The results showed that those higher in age had lower presence of multidrug resistant organisms (MDROs), cephalosporin use ≥ 15 days, Acute Physiology and Chronic Health Evaluation II (APACHE II) score ≥ 21 points, and lower CRE acquisition rates than those of CREP-model development subjects. The calibration-in-the-large was 0.12 (95% CI: - 0.16~0.39), while the calibration slope was 0.87 (95% CI: 0.63~1.12), and the concordance statistic was .71 (95% CI: .63~.78). At the predicted risk of .10, the sensitivity, specificity, and correct classification rates were 43.5%, 84.2%, and 79.6%, respectively. The net true positive according to the CREP-model were 3 per 100 subjects. After adjusting the predictors' cutting points, the concordance statistic increased to .84 (95% CI: .79~.89), and the sensitivity and net true positive was improved to 75.4%. and 6 per 100 subjects, respectively. Conclusion: The CREP-model's discrimination and clinical usefulness are low in a medium sized general hospital but are improved after adjusting for the predictors. Therefore, we suggest that institutions should only use the CREP-model after assessing the distribution of the predictors and adjusting their cutting points.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.448-448
/
2018
In this study, the regression models (Load ESTimator and eight-parameter model) were evaluated to estimate instantaneous pollutant loads under various criteria and optimization methods. As shown in the results, LOADEST commonly used in interpolating pollutant loads could not necessarily provide the best results with the automatic selected regression model. It is inferred that the various regression models in LOADEST need to be considered to find the best solution based on the characteristics of watersheds applied. The recently developed eight-parameter model integrated with Genetic Algorithm (GA) and Gradient Descent Method (GDM) were also compared with LOADEST indicating that the eight-parameter model performed better than LOADEST, but it showed different behaviors in calibration and validation. The eight-parameter model with GDM could reproduce the nitrogen loads properly outside of calibration period (validation). Furthermore, the accuracy and precision of model estimations were evaluated using various criteria (e.g., $R^2$ and gradient and constant of linear regression line). The results showed higher precisions with the $R^2$ values closed to 1.0 in LOADEST and better accuracy with the constants (in linear regression line) closed to 0.0 in the eight-parameter model with GDM. In hence, based on these finding we recommend that users need to evaluate the regression models under various criteria and calibration methods to provide the more accurate and precise results for pollutant load estimations.
Journal of the Korean Society for Precision Engineering
/
v.30
no.6
/
pp.615-621
/
2013
The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.