• Title/Summary/Keyword: Model based diagnosis method

Search Result 364, Processing Time 0.028 seconds

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

A Development of Feature Extraction and Condition Diagnosis Algorithm for Lens Injection Molding Process (렌즈 사출성형 공정 상태 특징 추출 및 진단 알고리즘의 개발)

  • Baek, Dae Seong;Nam, Jung Soo;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.1031-1040
    • /
    • 2014
  • In this paper, a new condition diagnosis algorithm for the lens injection molding process using various features extracted from cavity pressure, nozzle pressure and screw position signals is developed with the aid of probability neural network (PNN) method. A new feature extraction method is developed for identifying five (5), seven (7) and two (2) critical features from cavity pressure, nozzle pressure and screw position signals, respectively. The node energies extracted from cavity and nozzle pressure signals are also considered based on wavelet packet decomposition (WPD). The PNN method is introduced to build the condition diagnosis model by considering the extracted features and node energies. A series of the lens injection molding experiments are conducted to validate the model, and it is demonstrated that the proposed condition diagnosis model is useful with high diagnosis accuracy.

Fault Diagnosis of Variable Speed Refrigeration System Based on Current Information

  • Lee, Dong-Gyu;Jeong, Seok-Kwon;Hua, Li
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.137-144
    • /
    • 2008
  • This study deals with on-line fault detection and diagnosis(FDD) for heat exchangers of a variable speed refrigeration system(VSRS) based on current information. The current residual which is the difference between real detected current from current sensors and estimated current from no fault model was utilized to diagnose faults of the heat exchangers. Comparing to the conventional FDD of constant refrigeration system based on temperature and pressure information, the suggested FDD method shows better robustness to the VSRS which has a feedback control loop. Moreover the suggested method can be expected more precise and faster diagnosis of faults about heat exchangers. Throughout some experiments, the validity of the method was verified.

Literature Review on Community Health Assessment based on the Concept of 'Community as Client' (간호대상자로서의 지역사회 개념 및 지역사회간호사정에 관한 문헌분석)

  • June, Kyung-Ja;Kwon, Young-Sook;Oh, Jin-Ju;Park, Eun-Ok;Kim, Eun-Young;Kim, Hee-Girl
    • Research in Community and Public Health Nursing
    • /
    • v.11 no.1
    • /
    • pp.3-20
    • /
    • 2000
  • The purpose of this study was to compare the concept of community and community health, community health assessment tool, and community health nursing diagnosis based on the concept of 'Community as Client'. The method for this purpose was to search the articles and textbooks related to community assessment and review the contents by the researchers who were 5 community health nursing faculties and 1 doctoral candidate. The sources of articles were limited in Public Health Nursing and the Journal of Community Health Nursing. As the result, three types of conceptual model were classified: epideiological model. fuctional model. system model. System model by Newman and Helvie included more comprehensive concept of community health than others. Helvie model suggested the most specific indicators among them. The components of nursing diagnosis in the system model had the subjectives. problems and the related factors. It makes the nursing care plan related to the nursing diagnosis. But there was no nursing diagnosis system among the three model. It is needed to compare the nursing intervention based on the concept of 'Community as Client'. It will be helpful to the community health nursing practice to develop the nursing diagnosis system based on the system model. For the community health nursing education, it is suggested to try the case study by the using three types of model. Finally, it is needed to validate the community assessment tool in Korean setting.

  • PDF

A Machine Learning Approach for Mechanical Motor Fault Diagnosis (기계적 모터 고장진단을 위한 머신러닝 기법)

  • Jung, Hoon;Kim, Ju-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • In order to reduce damages to major railroad components, which have the potential to cause interruptions to railroad services and safety accidents and to generate unnecessary maintenance costs, the development of rolling stock maintenance technology is switching from preventive maintenance based on the inspection period to predictive maintenance technology, led by advanced countries. Furthermore, to enhance trust in accordance with the speedup of system and reduce maintenances cost simultaneously, the demand for fault diagnosis and prognostic health management technology is increasing. The objective of this paper is to propose a highly reliable learning model using various machine learning algorithms that can be applied to critical rolling stock components. This paper presents a model for railway rolling stock component fault diagnosis and conducts a mechanical failure diagnosis of motor components by applying the machine learning technique in order to ensure efficient maintenance support along with a data preprocessing plan for component fault diagnosis. This paper first defines a failure diagnosis model for rolling stock components. Function-based algorithms ANFIS and SMO were used as machine learning techniques for generating the failure diagnosis model. Two tree-based algorithms, RadomForest and CART, were also employed. In order to evaluate the performance of the algorithms to be used for diagnosing failures in motors as a critical railroad component, an experiment was carried out on 2 data sets with different classes (includes 6 classes and 3 class levels). According to the results of the experiment, the random forest algorithm, a tree-based machine learning technique, showed the best performance.

A diagnosis method of DC/DC converter aging based on the variation of parasitic resistor (시스템 모델링에 의한 DC/DC 컨버터 열화진단기법)

  • Kim T.J.;Baek J.W.;Dragos e>Dragos;Rim G.H.;Kim C.U.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1275-1277
    • /
    • 2004
  • In this paper, we propose a new diagnosis method of DC/DC converter aging. The method is based on the variations of parasitic resistor for the aging process. We apply an on-line diagnosis of DC/DC converter because the observation is not a device, but a system. This study proposes a method of DC/DC converter diagnosis by analyzing the variations of model on the variations of parasitic resistor.

  • PDF

Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

  • Sun, Yu-shan;Ran, Xiang-rui;Li, Yue-ming;Zhang, Guo-cheng;Zhang, Ying-hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • Autonomous Underwater Vehicles (AUVs) generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment) loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

Robust process fault diagnosis with uncertain data

  • Lee, Gi-Baek;Mo, Kyung-Joo;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.283-286
    • /
    • 1996
  • This study suggests a new methodology for the fault diagnosis based on the signed digraph in developing the fault diagnosis system of a boiler plant. The suggested methodology uses the new model, fault-effect tree. The SDG has the advantage, which is simple and graphical to represent the causal relationship between process variables, and therefore is easy to understand. However, it cannot handle the broken path cases arisen from data uncertainty as it assumes consistent path. The FET is based on the SDG to utilize the advantages of the SDG, and also covers the above problem. The proposed FET model is constructed by clustering of measured variables, decomposing knowledge base and searching the fault propagation path from the possible faults. The search is performed automatically. The fault diagnosis system for a boiler plant, ENDS was constructed using the expert system shell G2 and the advantages of the presented method were confirmed through case studies.

  • PDF

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.

Engine Fault Diagnosis Using Sound Source Analysis Based on Hidden Markov Model (HMM기반 소음분석에 의한 엔진고장 진단기법)

  • Le, Tran Su;Lee, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.244-250
    • /
    • 2014
  • The Most Serious Engine Faults Are Those That Occur Within The Engine. Traditional Engine Fault Diagnosis Is Highly Dependent On The Engineer'S Technical Skills And Has A High Failure Rate. Neural Networks And Support Vector Machine Were Proposed For Use In A Diagnosis Model. In This Paper, Noisy Sound From Faulty Engines Was Represented By The Mel Frequency Cepstrum Coefficients, Zero Crossing Rate, Mean Square And Fundamental Frequency Features, Are Used In The Hidden Markov Model For Diagnosis. Our Experimental Results Indicate That The Proposed Method Performs The Diagnosis With A High Accuracy Rate Of About 98% For All Eight Fault Types.