• 제목/요약/키워드: Model Recognition

검색결과 3,440건 처리시간 0.03초

공유모델 인식 성능 향상을 위한 효율적인 연속 어휘 군집화 모델링 (Efficient Continuous Vocabulary Clustering Modeling for Tying Model Recognition Performance Improvement)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.177-183
    • /
    • 2010
  • 연속 어휘 인식 시스템에서는 통계적 방법에 의한 어휘 인식을 수행하기 위하여 확률분포를 이용하며 이는 음소 단위의클러스터링을사용하여모델링하여샘플들을기반으로 확률 파라미터를 추정한다. 어휘 검색 시 추정된 확률 파라미터로부터 인식 결과를 나타내는데 미리 정의되지 않은 음소와 추가되어진 음소로부터 인식률이 저하되는 문제점이 발생하며, 하나의 클러스터링으로 모델링하므로 가우시안 모델이 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 확률 분포의 혼합 가우시안 모델을 최적화하여 유사도를 기반으로 Euclidean과 Bhattacharyya 거리 측정 방법을 혼합한 군집화 모델을 제안하고, 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 98.63%, 어휘 독립 인식률은 97.91%의 인식률을 나타내었다.

모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템 (Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model)

  • 음혁민;이희진;윤창용
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.471-476
    • /
    • 2016
  • 본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.

남편의 육아지원에 대한 부인의 인지와 정신적 건강과의 관련성 - 한국과 일본의 비교 - (Recognition of a Housewife for Rearing-related Supports of a Husband and its Relationship with Mental Health -Comparison between Korea and Japan -)

  • 박천만;오까다세쯔코
    • 보건교육건강증진학회지
    • /
    • 제24권4호
    • /
    • pp.161-179
    • /
    • 2007
  • To commonly apply the ${\ulcorner}$Measurement parameter for housewives for rearing-related supports of a husband${\lrcorner}$ in Korea and Japan, the current study conducted to confirm the relationship between recognition of a housewife for rearing-related supports of a husband and mental health after reviewing the appropriateness of the parameter. For the statistical analysis, 829 married Korean women in D city and 1,302 Japanese women in S city having children before entering a school were subjected for the study. For reviewing the appropriateness of the parameter, the simultaneous factor analysis that adopted the structural equation modeling was used. As the result of the analysis, 10 categories of factor structural model comprising the ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ resulted with the secondary model which sets of ${\ulcorner}$Recognition for emotional support${\lrcorner}$, ${\ulcorner}$Recognition for instrumental support${\lrcorner}$ and ${\ulcorner}$Recognition for information support${\lrcorner}$ as the primary factor and ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ as the secondary factor, and the model was found to be appropriate for the data in Korea and Japan. The result is considered to prove the constructs validity of ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ parameter. In addition, the relationship between ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ and mental health(GHQ) was reviewed by using multiple indicator model, and found the similarity of Korean and Japanese data. The scores measured by using the above parameter resulted to show high relationship with educational level of housewife, family configuration, and number of children.

연속 잡음 음성 인식을 위한 다 모델 기반 인식기의 성능 향상에 대한 연구 (Performance Improvement in the Multi-Model Based Speech Recognizer for Continuous Noisy Speech Recognition)

  • 정용주
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.55-65
    • /
    • 2008
  • Recently, the multi-model based speech recognizer has been used quite successfully for noisy speech recognition. For the selection of the reference HMM (hidden Markov model) which best matches the noise type and SNR (signal to noise ratio) of the input testing speech, the estimation of the SNR value using the VAD (voice activity detection) algorithm and the classification of the noise type based on the GMM (Gaussian mixture model) have been done separately in the multi-model framework. As the SNR estimation process is vulnerable to errors, we propose an efficient method which can classify simultaneously the SNR values and noise types. The KL (Kullback-Leibler) distance between the single Gaussian distributions for the noise signal during the training and testing is utilized for the classification. The recognition experiments have been done on the Aurora 2 database showing the usefulness of the model compensation method in the multi-model based speech recognizer. We could also see that further performance improvement was achievable by combining the probability density function of the MCT (multi-condition training) with that of the reference HMM compensated by the D-JA (data-driven Jacobian adaptation) in the multi-model based speech recognizer.

  • PDF

3D 콘텐츠 제어를 위한 키넥트 기반의 동작 인식 모델 (Kinect-based Motion Recognition Model for the 3D Contents Control)

  • 최한석
    • 한국콘텐츠학회논문지
    • /
    • 제14권1호
    • /
    • pp.24-29
    • /
    • 2014
  • 본 논문에서는 키넥트 적외선 프로젝터를 통해 깊이를 감지할 수 있는 카메라를 이용하여 사람 움직임을 추적하고 본 논문에서 제안한 몸동작 모델 인식을 통하여 3D 콘텐츠를 제어하는 기법을 제안 한다. 본 논문에서 제안하는 사람의 동작 인식 모델은 사람의 오른팔과 왼팔의 손목, 팔꿈치, 어께 움직임의 거리를 계산하여 좌, 우, 상, 하, 확대, 축소, 선택 등의 7가지 동작 상태를 인식한다. 본 연구에서 제안한 키넥트 기반의 동작 인식 모델은 기존의 접촉식 방식의 인터페이스와 비교할 때 특정센서 또는 장비 부착에 대한 불편함을 없애고 고비용의 하드웨어 시스템을 이용하지 않음으로서 사람의 자연스런 몸동작 이동에 따른 저 비용 3D 콘텐츠 제어 기술을 보여준다.

LDA 혼합 모형을 이용한 얼굴 인식 (Face Recognition using LDA Mixture Model)

  • 김현철;김대진;방승양
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권8호
    • /
    • pp.789-794
    • /
    • 2005
  • LDA는 데이타를 잘 구분하게 하는 변환을 제공하고, 얼굴 인식에서 우수한 성능를 보였다. 그러나, LDA는 전체 데이타에 대해 단 하나의 변환 행렬만을 주므로 사람 얼굴과 같은 많은 클래스로 구성되어 있는 복잡한 데이타를 구분하기에 충분하지 않다. 이런 약점을 극복하기 위해 우리는 LDA 혼합 모형이라는 새로운 얼굴 인식 방법을 제안한다. LDA 혼합 모형에서는 모든 클래스가 여러 개의 군집으로 분할되고 각 군집에 대해서 하나의 변환 행렬을 얻는다. 이렇게 더 세세히 표현하는 방법은 분류 성능을 크게 향상시킬 것이다 얼굴 인식 실험 결과, LDA 혼합 모형은 PCA, LDA, PCA 혼합 모형보다 더 우수한 분류 성능을 보여주었다.

은닉 마코프 모델을 이용한 음성 인식 시스템 설계 (Design of A Speech Recognition System using Hidden Markov Models)

  • 이철원;임인칠
    • 전자공학회논문지B
    • /
    • 제33B권1호
    • /
    • pp.108-115
    • /
    • 1996
  • 본 논문에서는 이산 은닉 마코프 모델(Discrete Hidden Markov Model)을 이용한 연결 음성 인식에 관한 알고리듬 및 모델 토폴로지를 제안한다. 제안된 모델은 인식률과 인식할 수 있는 어휘를 고려하여 2 음소열 및 3 음소열 모델을 사용하며, 보다 정확한 음소 간의 세그멘테이션과 알고리듬의 수행 속도를 고려하여 2 음소열에서는 첫 번째 상태와 마지막 상태를 안정 상태, 나머지 상태는 천이 상태인 4 개의 상태를 갖도록 하고, 또한 3 음소열에서는 7 개의 상태를 갖도록 하며, 여기서 7개의 상태는 3 개의 안정 상태와 4개의 천이 상태를 갖도록 개선한다. 또한, 제안된 음성 인식 알고리듬은 인식 과정 내에서 음소의 발음 구간을 검출하도록 설계한다.

  • PDF

연속분포 HMM에서 평행분기 음성단위를 사용한 단어인식율 향상연구 (On the Use of a Parallel-Branch Subunit Mod디 in Continuous HMM for improved Word Recognition)

  • 박용규;은종관
    • The Journal of the Acoustical Society of Korea
    • /
    • 제14권2E호
    • /
    • pp.25-32
    • /
    • 1995
  • 단어인식의 성능향상을 위하여 평행분기 음성단위(subunit) 모델의 사용을 제안하였으며 연속 분포 HMM에서 이 모델은 각 음성단위를 확률분포함수 (mixture components)를 이용하여 분기시킴에 의해 얻어진다. 제안된 방법을 사용한 결과에 따르면 기존에 제안된 평행분기 [1] 음성단위 모델이나 단일분기 모델보다 높은 인식률을 얻을 수 있었다. 본 연구에서는 각 음성단위에 대해 활률분포함수나 분기수의 적절한 결합을 통해 높은 인식률을 얻는데 이 1036 한국어 결리단어가 인시실험에 사용되었다.

  • PDF

멀티모달 사용자 인터페이스를 위한 펜 제스처인식기의 구현 (Implementation of Pen-Gesture Recognition System for Multimodal User Interface)

  • 오준택;이우범;김욱현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.121-124
    • /
    • 2000
  • In this paper, we propose a pen gesture recognition system for user interface in multimedia terminal which requires fast processing time and high recognition rate. It is realtime and interaction system between graphic and text module. Text editing in recognition system is performed by pen gesture in graphic module or direct editing in text module, and has all 14 editing functions. The pen gesture recognition is performed by searching classification features that extracted from input strokes at pen gesture model. The pen gesture model has been constructed by classification features, ie, cross number, direction change, direction code number, position relation, distance ratio information about defined 15 types. The proposed recognition system has obtained 98% correct recognition rate and 30msec average processing time in a recognition experiment.

  • PDF

Smart Phone Road Signs Recognition Model Using Image Segmentation Algorithm

  • Huang, Ying;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.887-890
    • /
    • 2012
  • Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.

  • PDF