연속 어휘 인식 시스템에서는 통계적 방법에 의한 어휘 인식을 수행하기 위하여 확률분포를 이용하며 이는 음소 단위의클러스터링을사용하여모델링하여샘플들을기반으로 확률 파라미터를 추정한다. 어휘 검색 시 추정된 확률 파라미터로부터 인식 결과를 나타내는데 미리 정의되지 않은 음소와 추가되어진 음소로부터 인식률이 저하되는 문제점이 발생하며, 하나의 클러스터링으로 모델링하므로 가우시안 모델이 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 확률 분포의 혼합 가우시안 모델을 최적화하여 유사도를 기반으로 Euclidean과 Bhattacharyya 거리 측정 방법을 혼합한 군집화 모델을 제안하고, 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 98.63%, 어휘 독립 인식률은 97.91%의 인식률을 나타내었다.
본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.
To commonly apply the ${\ulcorner}$Measurement parameter for housewives for rearing-related supports of a husband${\lrcorner}$ in Korea and Japan, the current study conducted to confirm the relationship between recognition of a housewife for rearing-related supports of a husband and mental health after reviewing the appropriateness of the parameter. For the statistical analysis, 829 married Korean women in D city and 1,302 Japanese women in S city having children before entering a school were subjected for the study. For reviewing the appropriateness of the parameter, the simultaneous factor analysis that adopted the structural equation modeling was used. As the result of the analysis, 10 categories of factor structural model comprising the ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ resulted with the secondary model which sets of ${\ulcorner}$Recognition for emotional support${\lrcorner}$, ${\ulcorner}$Recognition for instrumental support${\lrcorner}$ and ${\ulcorner}$Recognition for information support${\lrcorner}$ as the primary factor and ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ as the secondary factor, and the model was found to be appropriate for the data in Korea and Japan. The result is considered to prove the constructs validity of ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ parameter. In addition, the relationship between ${\ulcorner}$Recognition of a housewife for rearing-related supports of a husband${\lrcorner}$ and mental health(GHQ) was reviewed by using multiple indicator model, and found the similarity of Korean and Japanese data. The scores measured by using the above parameter resulted to show high relationship with educational level of housewife, family configuration, and number of children.
Recently, the multi-model based speech recognizer has been used quite successfully for noisy speech recognition. For the selection of the reference HMM (hidden Markov model) which best matches the noise type and SNR (signal to noise ratio) of the input testing speech, the estimation of the SNR value using the VAD (voice activity detection) algorithm and the classification of the noise type based on the GMM (Gaussian mixture model) have been done separately in the multi-model framework. As the SNR estimation process is vulnerable to errors, we propose an efficient method which can classify simultaneously the SNR values and noise types. The KL (Kullback-Leibler) distance between the single Gaussian distributions for the noise signal during the training and testing is utilized for the classification. The recognition experiments have been done on the Aurora 2 database showing the usefulness of the model compensation method in the multi-model based speech recognizer. We could also see that further performance improvement was achievable by combining the probability density function of the MCT (multi-condition training) with that of the reference HMM compensated by the D-JA (data-driven Jacobian adaptation) in the multi-model based speech recognizer.
본 논문에서는 키넥트 적외선 프로젝터를 통해 깊이를 감지할 수 있는 카메라를 이용하여 사람 움직임을 추적하고 본 논문에서 제안한 몸동작 모델 인식을 통하여 3D 콘텐츠를 제어하는 기법을 제안 한다. 본 논문에서 제안하는 사람의 동작 인식 모델은 사람의 오른팔과 왼팔의 손목, 팔꿈치, 어께 움직임의 거리를 계산하여 좌, 우, 상, 하, 확대, 축소, 선택 등의 7가지 동작 상태를 인식한다. 본 연구에서 제안한 키넥트 기반의 동작 인식 모델은 기존의 접촉식 방식의 인터페이스와 비교할 때 특정센서 또는 장비 부착에 대한 불편함을 없애고 고비용의 하드웨어 시스템을 이용하지 않음으로서 사람의 자연스런 몸동작 이동에 따른 저 비용 3D 콘텐츠 제어 기술을 보여준다.
LDA는 데이타를 잘 구분하게 하는 변환을 제공하고, 얼굴 인식에서 우수한 성능를 보였다. 그러나, LDA는 전체 데이타에 대해 단 하나의 변환 행렬만을 주므로 사람 얼굴과 같은 많은 클래스로 구성되어 있는 복잡한 데이타를 구분하기에 충분하지 않다. 이런 약점을 극복하기 위해 우리는 LDA 혼합 모형이라는 새로운 얼굴 인식 방법을 제안한다. LDA 혼합 모형에서는 모든 클래스가 여러 개의 군집으로 분할되고 각 군집에 대해서 하나의 변환 행렬을 얻는다. 이렇게 더 세세히 표현하는 방법은 분류 성능을 크게 향상시킬 것이다 얼굴 인식 실험 결과, LDA 혼합 모형은 PCA, LDA, PCA 혼합 모형보다 더 우수한 분류 성능을 보여주었다.
본 논문에서는 이산 은닉 마코프 모델(Discrete Hidden Markov Model)을 이용한 연결 음성 인식에 관한 알고리듬 및 모델 토폴로지를 제안한다. 제안된 모델은 인식률과 인식할 수 있는 어휘를 고려하여 2 음소열 및 3 음소열 모델을 사용하며, 보다 정확한 음소 간의 세그멘테이션과 알고리듬의 수행 속도를 고려하여 2 음소열에서는 첫 번째 상태와 마지막 상태를 안정 상태, 나머지 상태는 천이 상태인 4 개의 상태를 갖도록 하고, 또한 3 음소열에서는 7 개의 상태를 갖도록 하며, 여기서 7개의 상태는 3 개의 안정 상태와 4개의 천이 상태를 갖도록 개선한다. 또한, 제안된 음성 인식 알고리듬은 인식 과정 내에서 음소의 발음 구간을 검출하도록 설계한다.
단어인식의 성능향상을 위하여 평행분기 음성단위(subunit) 모델의 사용을 제안하였으며 연속 분포 HMM에서 이 모델은 각 음성단위를 확률분포함수 (mixture components)를 이용하여 분기시킴에 의해 얻어진다. 제안된 방법을 사용한 결과에 따르면 기존에 제안된 평행분기 [1] 음성단위 모델이나 단일분기 모델보다 높은 인식률을 얻을 수 있었다. 본 연구에서는 각 음성단위에 대해 활률분포함수나 분기수의 적절한 결합을 통해 높은 인식률을 얻는데 이 1036 한국어 결리단어가 인시실험에 사용되었다.
In this paper, we propose a pen gesture recognition system for user interface in multimedia terminal which requires fast processing time and high recognition rate. It is realtime and interaction system between graphic and text module. Text editing in recognition system is performed by pen gesture in graphic module or direct editing in text module, and has all 14 editing functions. The pen gesture recognition is performed by searching classification features that extracted from input strokes at pen gesture model. The pen gesture model has been constructed by classification features, ie, cross number, direction change, direction code number, position relation, distance ratio information about defined 15 types. The proposed recognition system has obtained 98% correct recognition rate and 30msec average processing time in a recognition experiment.
Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.