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ABSTRACT

In this paper, we propose to use a parallel-branch subunit model for improved word recognition. The model is 

obtained by splitting off each subunit branch based on mixture component in continuous hidden Markov model (con­

tinuous HMM). According to simulation results, the proposed model yields higher recognition rate than the 

single-branch subunit model or the parallel-branch subunit model proposed by Rabiner et al [ 1 ]. We show that a 

proper combination of the number of mixture components and the number of branches for each subunit results in 

increased recognition rate. To study the recognition performance of the proposed algorithms, the speech material 

used in this work was a vocabulary with 1036 Korean words.

요 약

단어인식의 성능향상을 위하여 평행분기 음성단위(subunit) 모델의 사용을 제안하였으며 연속 분포 HMM에서 이 모델 

은 각 음성단위를 확률분포함수 (mixture components)를 이용하여 분기시킴에 의해 얻어진다. 제안된 방법을 사용한 결과 

에 따旦면 기존에 제안된 평행분기 [1] 음성단위 모델이나 단일분기 모델보다 높은 인식율을 얻을 수 있었다. 본 연구에서는 

각 음성단위에 대해 확률분포함수나 분기수의 적절한 결합을 통해 높은 인식율을 얻는데 이 1036 한국어 격리단어가 인식실 

험에 사용되었다.

I ・ Introduction

In the past few years, hidden Markov model 

(HMM) has been successfully applied to many 

speech recognition systems[2] [5]. The HMM- 

based speech recognition system uses training 

algorithm, which adj usts paramenters to obtain 

an approximation to the maximum-likelihood 

estimates (MLE) of HMM parameters [6] [끼 

L8] [9].

It has been shown that when a large amount of 

training data is available, the performance of a 
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speech recognizer can generally*  be improved by 

creating more than one template or statistical 

model for each of the recognition units [1]. In 

fact, the speech recognizer using either multiple 

templates or statistical models have been success 

fully applied to word recognition. In the course 

of our research on isolated word recognition, how­

ever, the use of a paraliel-branch subunit model 

appeared more efficient for word recognition, 

because it provides more accurate representation 

of the variants of speech, s니ch as sex, age, 

coarticulation and articulation manner. With this 

observation, we have studied an algorithm for 

creating a parallel-branch subunit model in conti­

nuous HMM, and tested its recognition perform­

ance of isolated Korean words.

It has been known that the conventional training 

scheme of maximum likelihood is easily combined 

with a parallel-branch subunit model [1] [2] [3]. 

One of the most important issues in speech recog­

nition is how to initialize the HMMs for training. 

While the training algorithm guarantess improve­

ment in every iteration, it does not guarantee the 

global maximum. If the initialization is poor, one 

may find a local maximum that results in poor 

recognition rate. For example, a zero probability 

in the parallel-branch subunit model will remain 

zero in every iteration. As will be seen in the 

next section, the proposed parallel-branch subunit 

model allows many degrees of freedom(i.e., many 

continuous parameters which will be estimated 

from observations) with respect to the amount of 

training data. Thus, a more sophisticated form of 

initialization is needed. According to our exper­

imental results, good initialization becomes more 

important when the number of parallel branchs 

increases. We show that the initialization approach 

너sing the maximizing likelihood method proposed 

by Rabiner et al. [1] does not work well in the 

case of the parallel-branch subunit model.

In the following, we first describe various 

algorithms of generation and training of the 

parallel-branch subunit model in Section 2. In this 

section we develop a procedure which initializes a 

new parallel-branch subunit model by splitting off 

each subunit branch with Gaussian mixt나！'e compo- 

nents in continuous HMM. Next m Section 3, we 

present the speech database and conditions for 

experiments, and discuss experimental results. 

Finally, we make a conclusion in Section 4.

II. Generation and Training of Multiple Mod이s

The speech subunit used here is represented by 

a single first-order, ieft-to-right, hidden Markov 

model having 3 states, with s이f-and forward 

transitions without skipping. Although either the 

segmental k-means algorithm or the Baum-Welch 

algorithm can be used, we used the former. For 

every state, the transition probability of moving 

from state Sj at time / + 1 is represented by ai}. 

And, for the spectral density within Sj of a conti­

nuous HMM, the observation pdf in s7 is given by

M

bj( O/) 一 £ C丿秫丄\(O.卩切丿册) 
m = 1 

M
=E 2| 切気 |U2

1

exp [ -y g —卩"' £泉(Of — ")] (1)

where M is the number of Gaussian mixture 

components : cjm is the mixture gain for the wth 

mixture : N(Oh 卜"denotes the Gaussian" 

probability density function for an observation 

vector Q with the mean vector 印初 and the 

covariance matrix 所：N is the dimension of 

each observation vector : s니perscript T denotes 

vector transpose : and I -1 represents a determi­

nant. In Fig. 1, a single-branch subunit model and 

a parallel-branch subunit model are shown, where 

the superscript indicates the branch number.

2.1 The splitting algorithm based on maximum 

likelihood method
Rabiner et al. proposed a splitting procedure of 

subunit branches whose likelihood scores are rela-
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(b)

그림. 1. (a) Single-branch subunit model and

(b) Parallel-branch sub니nit model.

tively low. The objective of maximum likelihood 

model estimation is to obtain a set of parallel- 

branch model parameters which gives the maxi­

mum likelihood based on the given set of training 

data. This algorithm is basically related to the 

one-mixture continuous HMM. The procedure for 

splitting off subunit branchs with low likelihood 

scores and creating new ones from these subunit 

branches is as follows :

1. Training is done on a set of subunits with 

one branch and one mixture until convergence is 

reached.

2. For each subunit, one of the branches per 

each subunit associated with the lowest likelihood 

score is used to initialize an additional branch for 

that subunit by splitting it off.

3. The training procedure is repeated on the 

new set of parallel-branch models until conver­

gence is achieved.

4. The above procedure(i.e., steps 2 and 3) is 

iterated until the desired number of branches per 

subunit is obtained.

After those branches for each subunit a：re 

obtained, the number of mixture components, K, 

can be estimated by the vector quantization (VQ) 

procedure on segmented data. And then the seg­

mental k-means training procedure is used on the 

parallel-branch subunit model until convergence 

is reached.

The above initialization method is based on the 

concept of likelihood maximization, starting from 

a small set of subunits and iteratively splitting off 

the subunit branches with low likelihood scores. 

The above procedure does not provide good initial 

representations of the parallel-branch subunit model 
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m the training set. The approach of inaxinuzing 

likelihood tends to give an improved model of 

subunits for which the initial estimates were 

generally quite good, but tend to lead to poor 

estimates for subunits which are poorly represented 

by the initial model.

2.2 The splitting algorithm based on mixture 

components

A block diagram for generation and training of 

a parallel-branch subunit model with M branches 

and K mixtures is illustrated in Fig. 2. For 

creation of the parallel-branch subunit mod이 from 

a single-branch s니bunit model with M mixtures, 

the number of initial mixture components is set to 

the desired number of parallel branches per subunit.

그림 2. Flow chart of generation and training of a par­

allel-branch subunit model based on mixture 

components.

For the continuous HMM. the model parameters,

i.e.,  a；, can be estimated

using the segmental k-means algorithm as 

follows.

Stpe 1 : Initialization

Linearly segment all training vectors into pho­

neme units and HMM states. By chustering, the 

parameters（印渺 Mm,勺初）are initialized.

Stpe 2 : Segmentation

The HMM parameters estimated in Step 1 or 

Step 3 are used to （re）segment each training 

utterance into phoneme units and HMM states 

via Viterbi decoding. The transition probabilities 

are obtained from the segmentation.

Stpe 3 : Clustering and estimation

All the observation vectors corresponding to a 

particular state of each phoneme model are 

partitioned into M clusters using the standard VQ 

design method, and the parameters £丿物,c/林）

are estimated as

P-jm ~ ~ （2）
E Of VJm

；推=3」E （Q 一 «m）（Q —印辑）' （3）

f e vjm

rm —if 'a
Ljk

where 匸沥 denotes a set of vectors that have been 

partitioned to the Mh mixture of state j, and Ljm 

is the number of members in Vjm.

Step 4 : Steps 2-3 are repeated until the con­

vergence condition is satisfied.

After convergence is achieved, we can use the 

z-th trained 3-state subunit model to obtain z-th 

parallel-branch subunit model. The three states 

with self-loops can represent a transition into the 

subunit, a steady-state portion, and a transition 

out of the subunit, respectively, where they are 

denoted by s3z-, s卽+】，and s3j+2- The basic idea of 
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splitting is that the steady state portion coniribuk1^ 

the largest amount to the likelihood of 1 ht? thicc 

states. In Fig. 1., a null state is skipr)ed, <m(i 

therefore does not produce the output pdf.

shows the creation of a parallel-branch :、、ubunn 

model parameters except for the pdf of the 

steady-state part are set to the parameters of th$ 

single subunit model to be split oft as shown in 

Fig. 1. Only the output pdf of the steady state 

portion is set as f이lows.

成(Q) = Bl ((») = •••=關((») = •••-心(Q)

=/知(。) (5)

+ =成'+ 2(Q)= ?(Q)

=...=R*+ 9 (Of) — + ?(Q) (6)

砒 +1 (Q) = N( Q, “:计 +i. 1, + l ]) 

房i+i (Q) = N(Q,如• + },?, 1. j)

%?+l(Q)=N(Q, 0由・+l” Z.3Z+ 1, m)

仇"1(Q)= A'(Q, A.3; + l. ,u.切海+i,h) ⑺

出=苑=—=明=•,•=£出=阳 (8) 

where M is the total number of parallel branches 

for each subunit and superscript m denotes the m-th 

branch. The m-th branch pdf of the steady-state 

part is set to the m-th pdf of mixture components. 

Once the subunit model has been split, new seg­

mentation can be done in step 2 of the above 

algorithm. Also in step 3, the desired number of 

mixture components, K, can be estimated by the 

VQ procedure. And then the segmental k-means 

procedure is reiterated on the parallel-branch 

subunit model until convergence is obtained. As 

in the case of clustering, once the parallel-branch 

subunit model has been clustered, the training 

algorithm is used to give an optimal set of 

parameters for each of the parallel branches.

III. Experimental Evaluation

3.1 Task and Data Base

l'()study the recognition performance of the 

:auposcd algorithms and to compare these results 

with other algorithms, the speech niatenal used 

in this work was a vocabulary with 1036 Korean 

words produced by 48 speakers (32 males and 14 

females). 39 speakers(28 males and 11 females) 

were used for training data, and 9 others for test 

data. The total number of training words is 12227 

and that of the test word is 2810. They were used 

for estimating HMM parameters of 32 recognition 

and testing of the proposed algorithm.

The speech data was first low-pass filtered 

with a cutoff frequency of 7.2 kHz, and then 

digitized at a sampling rate of 16 kHz using a 16 

bit A/D converter. The digitized speech was then 

preemphasized with the digital filter, 1 —0.95z 

A 12th-order LPC analysis was performed on a 

Hamming-windowed speech segment of 20 ms, 

and a feature vector consisting of 13 cepstral 

coefficients(Cz) including log energy was generated 

every 10 ms. The 13 liftered cepstral coefficients 

(Ct) were computed as :

Ct(m) 0<>m<. 12

where G(0) is a log energy and 0：(林)is the window 

() TlTYl
of the form (m) = 1 + — sin(-- ), Q = 12. And

2 Q _

then the corresponding delta cepstral vector (AC, 

called linear regression coefficients can be obtained 

by

- £*一一 .. k kc/-k(m)
ACJm) = i . ....... ............; 0 M 初M 12

where G is a gain term which makes the variances 

of the 13 liftered cepstral coefficients and the 

corresponding delta cepstral vector equal. In our 

current implementation, K = 2 and (, = 3.16 were 

used. And the 13 liftered cepstral vector and the 

corresponding delta cepstral vector were conca- 
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lenated. resulting in a 26-dimensional observation 

vector : 2.1. We assumed a diagonal matrix m our 

experiments.

3.2 Simulation Results and Discussion

The word recognition performances in the 

training and test set are shown m Tables 1, 2, and 

3, where the values m the parenthesis denote the 

recognition accuracy including second candidate 

words.

As shown in Table 3, the recognition rates of 

test data based on mixture components are 

monotonically increasing depending on the number 

of parallel branches per subunit. In Table 2, it is 

seen that the word accuracy of the subunit model 

based on mixture components is significantly higher 

than that for the case of the splitting algorithm 

based on the maximum likelihood method by 

Rabiner et al[l]_ Hence, one can conclude that 

the proposed algorithms are efficient and give 

good recognition performances in word recognition, 

and that the initialization in the parallel-branch 

subunit model is very important when the number 

of parallel branches per subunit increases.

The proposed parailebbranch subunit model is 

shown to give improvement in recognition accuracy 

in comparison with the single-branch subunit 

model. Also, the performance of the single branch 

continuous HMM is evaluated by various number 

of mixtures, 1, 2, 3, 6, 9, and 15. This is 아iowti in 

Table 1. The recognition rate increases mono­

tonically up to the number of mixtures being 

equal to 15. As shown in Table 3, the recognition 

rate is increasing, its amount depending on the

표 1. Word Recognition Performance(%) of Single­

Branch Subunit Model (No. of Test Words was 

2810)

No. of mixtures Recognition rate

1 54.26(68.54)

2 63.18(76.19)

3 69.69(82.07)

4 71.23(83.15)

6 74.28(85.75)

9 73.94(87.06)

12 75.98(88.11)

15 74.25(86.97)

proposed by Rabiner et al. (No. of Test Words was 2810)

표 2. Word Recognition Performance (%) of a Parallel Branch Subunit Model Based on Maximum Likelihood

No. of Recognition rate with different number of branches

mixture 2 3 4 5

1 60.21(75.23) 63.95(78.22) 66.58(80.21) 63.38(76.66)

표 3. Word Recognition Performance(%) Of a Parallel-Branch subunit Model Based on the Mixture 

Components For The Test Set (No. of Test Words was 2810)

No. of Recognition rate with different number of branches

mixture 2 3 4 5

1 61.82(75.41) 65.59(78.68) 67.54(80.71) 68.65(81.64)

2 70.07(83.31) 73.70(85.45) 74.52(85.48) 74.41(85.84)

3 73.99(85.91) 76.55(87.47) 76.83(87.37) 74.88(86.62)

4 74.73(86.37) 77.05(88.61) 77.40(88.33) 77.87(88.33)

6 76.90(88.33) 一 - 一

9 77.9샤 (88.68) - - 一
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number of mixtures and the number of parallel 

branches. The highest recognition rate using the 

proposed method is 77.94%, This is obtained 

when a set of subunits with 2 parallel branch 

model and 9 mixtures is used. Nevertheless, since 

the amount data is limited, the number of branches 

per s니burnt and the number of mixture components 

must also be limited. The reason why the proposed 

method improves the recognition acc니racy may 

be explained as follows. In the conventional con­

tinuous HMM, the single-branch subunit model 

involved is not capable of providing good represe­

ntations of the variants of speech within a subunit. 

On the other hand, in the proposed training method 

it is based on HMM-based clustering according to 

variations of speech within the subunit. Hence, a 

proper combination of the number of mixture 

components and the number of branches for each 

subunit would be helpful in improving the recog­

nition rate.

IV. Con지니sions

We have shown that a parallel-branch subunit 

model and a proper number of mixture components 

yields significant performance improvement in 

speaker-independent word recognition. According 

to the simulation results for improved recognition, 

the use of a parallel-branch subunit model in con­

tinuous HMM is effective. A key issue in design 

and implementation of a parallel-branch subunit 

model is how to efficiently initialize the model 

that yields the best recognition performance. We 

have developed a splitting procedure which 

initializes each new parallel-branch subunit model 

by splitting off all subunits in the training sets.

While the training algorithm guarantess impro 

vement in every iteration, it does not guarantee 

finding a global maximum. If the initialization is 

poor, one may find a local maximum that results 

in poor recognition rate. The proposed model has 

many degrees of freedom(i.e., many continuous 

parameters) with respect to the amount of training 

data. Thus, a more sophisticated form of mitiali 

zation is needed. This model will increase the 

number of parameters which will be estimated 

from observations and require a large amount of 

training utterances. A proper combination oi the 

uumbor oi mixture components and the number of 

model per subunit would increase the recognition 

rate significantly.
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