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On the Use of a Parallel-Branch Subunit Model
in Continuous HMM for improved Word Recognition
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ABSTRACT

In this paper, we propose to use a paratlel-branch subunit model for improved word recognition. The model is
obtained by splitting off each subunit branch based on mixture component in continuous hidden Markov model{con-
tinuous HMM). According to simulation results, the proposed model yields higher recognition rate than the
single-branch subunit model or the parallel-branch subunit model proposed by Rabiner et al[1]. We show that a
proper combination of the number of mixture components and the number of branches for each subunit results in
increased recogmtion rate, To study the recognition performance of the proposed algorithms, the speech material

used in this work was a vocabulary with 1036 Korean words.
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I. introduction based speech recognition system uses training

algorithm, which adjusts paramenters to obtain

In the past few years, hidden Markov model an approximation to the maximume-likelihood

(HMM) has been successfully applied to many
speech recognition systems[2] [5). The HMM-
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estimates (MLE} of HMM parameters [6] [7]
(8] [9].

It has been shown that when a targe amount of
training data is available, the performance of a
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speech recognizer can generally be improved by
creating more than one template or statistical
miode] for each of the recognition units (1], In
fact, the speech recognizer using either muitiple
templates or statistical models have been success
fully applied to word recognition. In the course
of our research on isolated word recognition, how-
ever, the use of a parallel-branch subunit model
appeared more efficient for word recognition,
because it provides more accurate representation
of the variants of speech. such as sex, age.
coarticulation and articulation manner. With this
observation, we have studied an algorithm for
creating a parallel-branch subunit model in conti-
nuotts HMM, and tested its recognition perform-
ance of isolated Korean words,

It has been known that the conventional training
scheme of maximum likelihood is easily combined
with a parallel-branch subunit medel {17 {2] [3].
One of the most important issues in speech recog-
nition is how to initialize the HMMSs for training,
While the training algorithm guarantess improve-
ment in every iteration, it does not guarantee the
global maximum. If the initialization i1s poor, one
may find a local maximum that results in poor
recognition rate, For example, a zero probability
in the parallel-branch subunit model will remain
zero in every iteration. As will be seen in the
next section, the proposed parallel-branch subunit
model allows many degrees of freedom{i.e., many
continuous parameters which will be estimated
from observations) with respect to the amount of
training data. Thus, a more sophisticated form of
initialization is needed. According to our exper-
imental results, good initialization becomes more
important when the number of parallel branchs
increases, We show that the initialization approach
using the maximizing likelihood method proposed
by Rabiner et al. [1] does not work well in the
case of the parallel-branch subunit model.

In the following, we first describe various
algorithms of generation and training of the
parallel-branch subunit model in Section 2. In this

section we develop a procedure which initializes a
new parallel-branch subumt model by splitting off
each subunit branch with Gaussian mixture compo-
nents in continuous HMM. Next in Section 3, we
present the speech database and conditions for
experiments, and discuss experimental results,

Finally, we make a conclusion in Section 4,
Il. Generation and Training of Multiple Models

The speech subunit used here is represented by
a single first-order, left-to-right, hidden Markov
model having 3 states, with self-and forward
transitions without skipping, Although either the
segmental k-means algorithm or the Baum-Welch
algorithm can be used, we used the former. For
every state, the transition probability of moving
from state s; at time ¢+ 1 is represented by «;,.
And, for the spectral density within s; of a conti-
nuous HMM, the observation pdf in s, is given by

y
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where M is the number of Gaussian mixture
components ; ¢,, is the mixture gain for the nth
mixture : N(Oy. fijm L;a) denotes the Gaussian”
probability density function for an observation
vector O, with the mean vector p;, and the
covariance matrix ¥;,:N is the dimension of
each observation vector :superscript 7 denotes
vector transpose :and |-| represents a determi-
nant. In Fig. 1, a single-branch subunit mode] and
a parallel-branch subunit model are shown, where
the superscript indicates the branch number,

2.1 The splitting algorithm based on maximum
likelihood method
Rabiner et al. proposed a splitting procedure of
subunit branches whose likelihood scores are rela-
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2L 1. (a) Single-branch subunit medel and

tb) Parallel-branch subunit model.

tively low, The objective of maximum likelihood
model estimation is to cbtain a set of parallel-
branch model parameters which gives the maxi-
mum likelihood based on the given set of training
data. This algorithm 1s basically related to the
one-mixture continuous HMM, The procedure for
splitting off subunit branchs with low likelihood
scores and creating new ones from these subunit

branches is as follows :

1. Training is done on a set of subunits with
one branch and one mixture until convergence is
reached.

2. For each subunit, one of the branches per
each subunit associated with the lowest likelihood
score is used to imtjalize an additional branch for
that subunit by splitting it off,

3. The training procedure is repeated on the

new set of parallel-hranch models until conver-
gence is achieved,

4. The above procedureti.e., steps 2 and 3) is
iterated until the desired number of branches per
subunt is obtained.

After
obtained, the number of mixture components, K,

those branches for each subumt are

can be estimated by the vector quantization(VQ)
procedure on segmented data. And then the seg-
mental k-means training procedure is used on the
parallel-branch subunit model until convergence
1s reached.

The above initialization methed is based on the
concept of likelthood maximization, starting from
a small set of subunits and iteratively splitting off
the subunit branches with low likelihood scores,
The above procedure does not provide good initial
representations of the parallel-branch subunit model
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i the tramning set. The approach of maximizing
bkelihood tends to give an improved model of
subunits for which the initial estimates were
generally quite good, but tend to lead to poor
estimates for subunits which are poorly represented
by the inittal model.

2.2 The splitting algorithm based on mixture
components

A block diagram for generation and training of
a parallel-branch subunit model with 1/ branches
and A mixtures is illustrated in Fig. 2. For
creation of the parallel-branch subunit model from
4 single-branch subunit model with M mixtures,
the number of initial mixture components is set to
the destred number of parallel branches per subunit,

! Initialization

[ Viterbi segmentation J

[ Clustering and estimation l

No

Convergence

1 branch and M mixtures

1Generation of mode! with M branches and M mixture:l

LViterbi segmentation J

[ Clustering and estimation J

No

Convergence

M branches and K mixtures

&l 2. Flow chart of generation and training of a par-
allel-branch subunit model based on mixture
components,

For the continuous HMM, the model parameters.
e, @, and(u,,. T .. ¢yt can be estimated
using the segmental k-means algorithm as
follows.

Stpe 1 : Inmitialization
Linearly segment all training vectors into pho-
neme units and HMM states. By chustering, the

parameters(y,,, ¥, ¢, are initialized.

Stpe 2 : Segmentation

The HMM parameters estimated in Step | or
Step 3 are used to (re)segment each training
utterance into phoneme units and HMM states
via Viterbi decoding. The transition probabilities
are obtained from the segmentation.

Stpe 3 : Clustering and estimation

All the observation vectors corresponding to a
particular state of each phoneme model are
partitioned into M clusters using the standard VQ
design method, and the parameters(p;m, ¥ jm, €;m}
are estimated as

1
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where V;,, denotes a set of vectors that have been
partitioned to the mth mixture of state 7, and L;»,
is the number of members in V',

Step 4:Steps 2-3 are repeated until the con-
vergence condition is satisfied.

After convergence 1s achieved, we can use the
z-th trained 3-state subunit model to obtain ¢-th
parallel-branch subunit model. The three states
with self-loops can represent a transition into the
subunit, a steady-state portion, and a transition
out of the subunit, respectively, where they are
denoted by $;;, S3i41, and Sy 40 The basic idea of
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splitting 1s that the steady-state portion contrilstie
the largest amount to the likelihood of the threo
states. In Fig. 1., a null state 1= skipped, o
therefore does not produce the autput padf, Fiyr 2
shows the creation of a paralicl- branch ~ubne
model parameters except for the pdf of Lhe
steady-state part are set to the parameters of the
single subunit model to be split off as shown in
Fig. 1. Only the output pdf of the steady state
portion is set as follows,
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':H_';,'(Of} (5)
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where M is the total number of parallel branches
for each subunit and superscript m denotes the #th
branch. The mth branch pdf of the steady-state
part is set to the »eth pdf of mixture components,
Once the subunit model has been split, new seg-
mentation can be done in step 2 of the above
algorithm, Alsc in step 3, the desired number of
mixture components, A, can be estimated by the
VQ procedure, And then the segmental k-means
procedure is reiterated on the parallel-branch
subunit model until convergence is obtained, As
in the case of clustering, once the parallel-branch
subunit mode] has been clustered, the training
algorithm 1s used to give an optimal set of
parameters for each of the parallel branches,

Ifl. Experimental Evaluation

3.1 Task and Data Base

T study the recognition performance of the
sropesed algorithms and to compare these results
with other algorithms, the speech material used
in this work was a vocabulary with 1036 Korean
words produced by 48 speakers{32 males and 14
females). 39 speakers{28 males and 11 females)
were used for training data, and 9 others for test
data, The total number of training words is 12227
and that of the test word is 2810. They were used
for estimating HMM parameters of 32 recognition
and testing of the proposed algorithm.

The speech data was first low-pass filtered
with a cutoff frequency of 7.2 kHz and then
digitized at a sampling rate of 16 kHz using a 16
bit A/D converter, The digitized speech was then
preemphasized with the digital filter, 1 —-0.95z '
A 12th-order LLPC analysis was performed on a
Hamming-windowed speech segment of 20 ms,
and a feature vector consisting of 13 cepstral
coefficients(C,) including log energy was generated
every 10 ms. The 13 liftered cepstral coefficients
(C,) were computed as .

Clm) = Am)W.im)  O<m< 12

where (E';(O) is a log energy and W {(m) is the window
)
of the form W, (m) =1+% sm(—z—;?}, ¢=12 And

then the corresponding delta cepstral vector (AC))
called linear regression coefficients can be obtained
by

- TN ke m)
AC (m) = | XK TN T,
L ok

0<m< 12

where (¢ (s a gain term which makes the variances
of the 13 liftered cepstral coefficients and the
corresponding delta cepstral vector equal. In our
current implementation, K =2 and ¢ =3,16 were
used. And the 13 liftered cepstral vector and the
corresponding delta cepstral vector were conca-
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tenated, resulting in a 26-dimensional observation
vector 2|, We assumed a diagonal matrix in our

cxperanents,

3.2 Simutation Results and Discussion

The word recognition performances in the
traimng and test set are shown in Tables 1, 2. and
3, where the values in the parenthesis denote the
recognition accuracy including second candidate
words,

As shown in Table 3, the recognition rates of
test data based on mixture components are
monotonically increasing depending on the number
of parallel branches per subunit, In Table 2, 1t is

seen that the word accuracy of the subunit model No. of mixtures Recognition rate
hased on muxture componernts is significantly higher 1 54,26(68.54)
than that for the case of the splitting algorithm 2 63.18(76.19)
based on the maximum likelihood method by 3 69.69(82.07)

; I —
Rabiner et al[1]. H'ence, one carll f:onclude tlllat 4 71.23(83.15)
the proposed algorithms are efficient and give 6 74.28(85.75)
ood recognition performances in word recognition, I
& snition perlorimance cogmity 9 73.94(87.06)
and that the initialization in the parallel-branch :

. . ) 12 75.98(88.11}
subunit model is very important when the number —
o 15 74.25(86.97)
of parallel branches per subunit increases.

The proposed parallel-branch subunit model is
shown to give improvement in recognition accuracy
in companson with the single-branch subunit
model. Also, the performance of the single branch
continuous HMM is evaluated by various number
of mixtures, 1, 2, 3, 6, 9, and 15. This is shown in
Table 1. The recognition rate increases monoc-
tonically up to the number of mixtures being
equal to 15. As shown in Table 3, the recognition
rate is Increasing, its amount depending on the

E 1. Word Recognition Performance(%) of Single-
Branch Subunit Model(No, of Test Words was
2810)

E 2. Word Recognition Performance(?5) of a Parallel-Branch Subunit Model Based on Maximum Likelihood
proposed by Rabiner et al (No. of Test Words was 2810)

No. of Recognition rate with different number of branches
mixture 2 3 4 5
1 60.21(75.23) 63.95(73.22) 66.58(80.21) 63.38(76.66)

¥ 3. Word Recognition Performance(%) Of a Parallel-Branch suburut Model Based on the Mixture
Components For The Test Set(No, of Test Words was 2810)

No. of Recognition rate with different number of branches

mixture 2 ] 3_ o 4 5
1 i 61‘82(?-5"31) 65.59(78.68) 67.54(80.71) 68.65(81.64)
2 70.07(83.31) 73.70(85.45) 74.52(85.48} 74.41(85.84)
3 73.99(85.91) 76.55(87.47) 76.83(87.37) 74.88(86.62)
4 74.73(86.37) 7.05(88.61) 77.40(88.33) 77.87(88.33)
6 76.90(88.33) - - -
9 77.94(88.68) - - -
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number of mixtures and the number of parallel
branches. The highest recognition rate using the
proposed method is 77.94%. This is obtained
when a set of subunits with 2 parallel branch
model and 9 mixtures is used. Nevertheless, since
the amount data is limited, the number of branches
per subunut and the number of mixture components
must also be limited. The reason why the proposed
method improves the recognition accuracy may
be explained as follows. In the conventional con-
tinuous HMM, the single-branch subunit model
involved is not capable of providing good represe-
ntations of the variants of speech within a subunit,
On the other hand, in the proposed training method
it is based on HMM-based clustering according to
variations of speech within the subunit. Hence, a
proper combination of the number of mixture
components and the number of branches for each
subunit would be helpful in improving the recog-

nition rate,

IV. Conclusions

We have shown that a parallel-branch subunit
model and a proper number of mixture components
vields significant performance improvement in
speaker-independent word recognition. According
to the simulation results for improved recognition,
the use of a parallel-branch subunit mode! in con-
tinuous HMM is effective. A key issue in design
and implementation of a parallel-branch subunit
model is how to efficiently initialize the model
that vields the best recognition performance., We
have developed a splitting procedure which
initializes each new parallel-branch subunit model
by splitting off all subunits in the training sets,

While the traiming algonthm guarantess impro-
vement in every iteration, it does not guarantee
finding a global maximum. If the initialization 1s
poor, one may find a local maximum that results
In poor recognition rate, The proposed model has
many degrees of freedomf{i.e., many continuous
parameters) with respect to the amount of training

data. Thus, a more sophisticated form of initiali
zation is needed. This model will increase the
number of parameters which will be estimated
from observations and require a large amount of
traimng utterances. A proper combination oi the
numhber ot muxture comnponents and the number of
nndel per subunit would increase the recognition

rate significantly.
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