• Title/Summary/Keyword: Model Power Line

Search Result 822, Processing Time 0.029 seconds

AVR Parameter tuning with On-line System model using Parameter optimization technique (On-line 시스템 모델과 파라메터 최적화 기법을 이용한 AVR의 최적 파라메터 튜닝)

  • Kim, Jung-Mun;Moon, Seung-Ill
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1242-1244
    • /
    • 1999
  • AVR parameter tuning for voltage control of power system generators has generally been done with the open-circuit model of the synchronous generator. When the generator is connected on-line and operating at rated load conditions, the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning using optimization technique with on-line linearized system model. As this method considers not only the on-line models but also the off-line open-circuit models, AVR parameters tuned by this method can give the sufficiently stable performance at the open-circuit commissioning phase and give the desired performance at the operating conditions. Also this method estimates the optimum parameters for desired performance indices that are chosen for satisfying requirements in some practical applications, the performance of the AVR can satisfy the various requirements.

  • PDF

Series Line Compensation through Voltage Source Inverter (전압원 인버터에 의한 선로의 직렬보상)

  • 한병문;한경희;신익상;강중구
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.299-302
    • /
    • 1997
  • This paper describes a dynamic var compensator to compensate the line reactance for power transmission and distribution system. The compensator consists of a voltage source inverter with dc capacitor, coupling transformers, and control circuit. The operation of compensator was verified by computer simulations with EMPT and experimental works with a scaled hardware model. The advantage of the proposed system is rapid and continuous regulation of the reactive power.

  • PDF

Performance Analysis of Direct-Sequence Spread Spectrum(DSSS) System in Power Line Communications (전력선통신에서 직접확산 스펙트럼(DSSS) 계의 성능 분석)

  • Suh, Heejong;Zhou, Xiaozheng
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.25-32
    • /
    • 2004
  • In this paper, we first analysed the ability of DSSS resistance against noises, which are main interferences to the four types in power line communications. Based on the characteristic of these noises, we made a noise source of power line which is similar with the result measured, in practice. We simulated and analysed the BER performance of BPSK with DSSS over this noise model and one without the DSSS, for comparison. Result showed that the BPSK with DSSS system has improved by 8 dB, as compared to those without the DSSS, as against power line noises.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

Effect of power line disturbance on loss of contact between contact wire and pantograph (전차선-팬터그래프 사이의 이선현상에 따른 전원외란이 보조전원장치에 미치는 영향)

  • Kim, Jae-Moon;Kim, Yang-Soo;Jang, Jin-Young;Gimm, Yoon-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.179-181
    • /
    • 2008
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

Realization of the Transmitter of Communication Modem for Control Systems using Power-Distribution Circuit (전력선 버스를 이용한 제어 시스템의 통신모뎀 송신기 구현에 관한 연구)

  • Chung, Chang-Kyung;Park, Young-Chull;Sohn, Dong-Sup
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.330-335
    • /
    • 1999
  • Recently, there a lot of activities on the researches that implement many kinds of control system using power lines. To implement that, it is desirable to use hybrid PSK model because it takes advantage of PSK and DPSK which has a low-bit-error rate. In this parer, we implement the transmitter of this model. Because the power line is not designed for the data communication, we separated the signal generator circuit and the signal loading circuit so that minimized noises from outside. Also, to make it easy on the experiments, most of process are performed by software. As a result, transmitting a high frequency signal on the power line made no effects on the electrical devices.

  • PDF

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

Real-time model updating for magnetorheological damper identification: an experimental study

  • Song, Wei;Hayati, Saeid;Zhou, Shanglian
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.619-636
    • /
    • 2017
  • Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

Implementation and Performance Analysis of PLC Scheme based on SISO/MIMO-OFDM using MRC (최대비 합성법을 이용한 SISO/MIMO-OFDM 기반 전력선 통신 방식 구현 및 성능분석)

  • Yoo, Jeong-Hwa;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.176-183
    • /
    • 2011
  • In this paper, we propose the implementation and performance analysis of power line communication based on SISO/MIMO-OFDM which focuses on high speed data transmission in smart grid and future power line grid. We employ Zimmermann frequency model and Middleton Class A model as the multipath power line fading channel and impulse noise channel, respectively. In this paper, in order to improve the three-phase or single-phase PLC performance, we introduce a new MRC (called a&f-MRC) which effectively sums up multiple antenna diversity gain and multipath fading diversity gain. Via simulation, we prove the performance advantage over existing SISO/MIMO systems. In addition, we offer the tradeoff on system design through comparing with MRC, EGC and SC.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.