• Title/Summary/Keyword: Model Material Techniques

Search Result 280, Processing Time 0.029 seconds

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach

  • Eberhardt, Oliver;Wallmersperger, Thomas
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.685-709
    • /
    • 2014
  • Carbon nanotubes are due to their outstanding mechanical properties destined for a wide range of possible applications. Since the knowledge of the material behavior is vital regarding the possible applications, experimental and theoretical studies have been conducted to investigate the properties of this promising material. The aim of the present research is the calculation of mechanical properties and of the mechanical behavior of single wall carbon nanotubes (SWCNTs). The numerical simulation was performed on basis of a molecular mechanics approach. Within this approach two different issues were taken into account: (i) the nanotube geometry and (ii) the modeling of the covalent bond. The nanotube geometry is captured by two different approaches, the roll-up and the exact polyhedral model. The covalent bond is modeled by a structural molecular mechanics approach according to Li and Chou. After a short introduction in the applied modeling techniques, the results for the Young's modulus for several SWCNTs are presented and are discussed extensively. The obtained numerical results are compared to results available in literature and show an excellent agreement. Furthermore, deviations in the geometry stemming from the different models are given and the resulting differences in the numerical findings are shown. Within the investigation of the deformation mechanisms occurring in SWCNTs, the basic contributions of each individual covalent bond are considered. The presented results of this decomposition provide a deeper understanding of the governing deformation mechanisms in SWCNTs.

Sound Radiation Analysis for Structural Vibration Noise Control of Tire Under the Action of Random Moving Line Forces (불규칙 이동분포하중을 받는 타이어의 구조 진동 소음 제어를 위한 음향방사 해석)

  • 김병삼;이성철
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.169-181
    • /
    • 1995
  • A theoretical model has been studied to describe the sound radiation analysis for structural vibration noise control of tire under the action of random moving line forces. When a tire is analyzed, it has been modeled as a curved beam with distributed springs and dash-pots which represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y = 0 and to be axially infinite. The material of curved beam and elastic foundation are assumed to be lossless, and governed by the law of Bernoulli-Euler beam theory. The expression for sound power is integrated numerically and its results examined as a function of Mach number(M), wavenumber ratio(.gamma.) and stiffness factor(.PSI.). The experimental investigation for structural vibration noise of tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. The experimental results show that operating condition, material properties and design factors of the tire have a great effect on the sound power and sound radiation characteristics.

  • PDF

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

A Study on the Degradation Mechanism of ZnO Ceramic Varistor Manufactured by Ambient Sintering-Process (분위기 소결공정에 의해 제조된 ZnO 세라믹 바리스터의 열화기구 연구)

  • 소순진;김영진;박춘배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.383-389
    • /
    • 2000
  • The relationship between the DC degradation characteristics of the ZnO varistor and the ambient sintering-process is investigated in this study. ZnO varistors made o matsuoka’s composition were fabricated by standard ceramic techniques. The ambient sintering-process is performed at the extraordinary electrical-furnace which is equipped with the vacuum system. Gases used in sintering process were oxygen nitrogen argon and air. Using XRD and SEM the phase and microstructure of samples were analyzed respectively. The conditions of DC degradation tests were conducted at 115$\pm$2$^{\circ}C$ for 13 h. Current-voltage analysis is used to determine nonlinear coefficients($\alpha$). Frequency analysis are performed to understand electrical properties as DC degradation test. From above analysis it is found that the ZnO varistor sintered in oxygen atmosphere showed superior properties at the DC degradation test and degradation phenomenon of ZnO varistor is caused by the change of electrical properties in grain boundary. These results are in accordance with Gupta’s degradation model.

  • PDF

Stress Analysis for Fiber Reinforced Composites under Indentation Contact Loading (압입접촉하중이 작용하는 섬유강화 복합재료의 응력해석)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Kim, Chul;Woo, Sang-Kuk;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.238-244
    • /
    • 2008
  • Modeling and FEM analysis on Boron Nitride and/or Pyrolytic Carbon coating layers on SiC fibers under indentation contact loadings are investigated. Especially this study attempts to model the mechanical behavior of the SiC fibers with and without coatings. Tyranno S grade and Tyranno LoxM grade of SiC are selected for fiber and Boron Nitride and/or Pyrolytic Carbon as coating material. The modeling is performed by SiC fiber without coating layer, which includs single(BN or PyC) and double(BN-PyC or PyC-BN) coating layer. And then the analysis is performed by changing a type of coating layer, a type of fiber and coating sequence. In this study, the concepts of modeling and analysis techniques for optimum design of BN and PyC coating process on SiC fiber are shown. Results show that stresses are reduced when indentation contact loading applies on the material having lower elastic modulus.

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

A Study on Process Management Method of Offshore Plant Piping Material using Process Mining Technique (프로세스 마이닝 기법을 이용한 해양플랜트 배관재 제작 공정 관리 방법에 관한 연구)

  • Park, JungGoo;Kim, MinGyu;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.143-151
    • /
    • 2019
  • This study describes a method for analyzing log data generated in a process using process mining techniques. A system for collecting and analyzing a large amount of log data generated in the process of manufacturing an offshore plant piping material was constructed. The analyzed data was visualized through various methods. Through the analysis of the process model, it was evaluated whether the process performance was correctly input. Through the pattern analysis of the log data, it is possible to check beforehand whether the problem process occurred. In addition, we analyzed the process performance data of partner companies and identified the load of their processes. These data can be used as reference data for pipe production allocation. Real-time decision-making is required to cope with the various variances that arise in offshore plant production. To do this, we have built a system that can analyze the log data of real - time system and make decisions.

An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process (탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구)

  • Lee, Jongpyo;Kim, Illsoo;Lee, Jihye;Park, Minho;Kim, Youngsoo;Park, Cheolkyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

A Study on the Interactive Art Created by Embodiment of 2-D Paintings Into 3-D Imaging (2차원 회화작품이 3차원 영상으로 구현되어 창작된 참여예술에 대한 연구)

  • 김진희
    • Archives of design research
    • /
    • v.14 no.3
    • /
    • pp.127-134
    • /
    • 2001
  • This study suggests a model of experimental visual artworks with interactive art forms in which 2-D paintings are transformed to interactive 3-D animation works. Multimedia programming was employed to evolve objective still paintings to the animation of computer 3-D images with respect to visual ideas derived from visual components in the still painting and to response to the reactions users. The format and technique of the art works are based upon the contents developed by the author and the research materials are selected from the surrealistic paintings of tile world-famous Belgian painter, Rene Magritte. In the present paper, following topics are discussed in detail: a study of various visual cases occurring in transforming still paintings to animation works containing interactive components; a study of 3-D imaging and image processing techniques to transform 2-D paintings to 3-D images; animation techniques for interaction and overall structuring techniques; multimedia programming and user interface.

  • PDF