• Title/Summary/Keyword: Model Helicopter

Search Result 268, Processing Time 0.025 seconds

A High-efficiency Trim Method for CFD Numerical Calculation of Helicopter Rotors

  • Ye, Zhou;Xu, Guo-hua;Shi, Yong-jie;Xia, Run-ze
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.186-196
    • /
    • 2017
  • In order to resolve the trimming difficulty in rotor CFD calculations, a high-efficiency and improved "delta trim method" is established to compute the blade control settings that are necessary to identify the blade motion. In this method, a simplified model which combines the blade element theory and different inflow models is employed to calculate the control settings according to the target aerodynamic forces, then it is coupled into a CFD solver with unsteady Navier-Stokes equations by the delta methodology, which makes the control settings and aerodynamics calculated and updated in the meantime at every trim cycle. Different from the previous work, the current research combines the inflow model based on prescribed wake theory. Using the method established, the control settings and aerodynamic characteristics of Helishape 7A, AH-1G and Caradonna-Tung rotors are calculated. The influence of different inflow models on trimming calculations is analyzed and the computational efficiency of the current "delta trim method" is compared with that of the "CFD-based trim method". Furthermore, for the sake of improving the calculation efficiency, a novel acceleration factor method is introduced to accelerate the trimming process. From the numerical cases, it is demonstrated that the current "delta trim method" has higher computational efficiency than "CFD-based trim method" in both hover and forward flight, and up to 70% of the amount of calculation can be saved by current "delta trim method" which turns out to be satisfactory for engineering applications. In addition, the proposed acceleration factor shows a good ability to accelerate the trim procedure, and the prescribed wake inflow model is always of better stability than other simple inflow models whether the acceleration factor is utilized in trimming calculations.

A Design of Handling Quality Assessment Environment Based on FLIGHTLAB Model Using Legacy Simulator (레거시 시뮬레이터를 활용한 FLIGHTLAB 모델 기반의 조종성 평가 환경 설계 연구)

  • Yang, Chang Deok;Lee, Seung Deok;Cho, Hwan Heui;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.530-536
    • /
    • 2016
  • The handling quality simulator including high fidelity flight mechanics model is indispensable component to design and verify the flight control system. Korea Aerospace Industries, LTD. (KAI) has been performing LCH (Light Civil Helicopter) core technology development program regarding automatic flight control system (AFCS) software development. And KAI has been developing flight mechanics model using FLIGHTLAB to design and evaluate the AFCS flight control law. This paper presents the handling quality assessment environment development results through the combining FLIGHTLAB with a legacy simulator. And this paper details the FLIGHTLAB model, application development process and FLIGHTLAB interface design. The developed handling quality assessment environment has been demonstrated with the ADS-33E hover and pirouette MTE (Mission Task Element) maneuver simulation.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF

Tethered Hover Test for Small Scaled Tilt-rotor UAV (축소형 틸트로터 무인기의 안전줄 호버 시험)

  • Park, Bum-Jin;Yoo, Chang-Sun;Chang, Sung-Ho;Choi, Seong-Wook;Koo, Sam-Ok;Kang, Young-Shin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2007
  • Tilt rotor aircraft can take off and land vertically and cruise faster than any other helicopter. A scaled flight demonstration model of a tilt rotor aircraft has been developed by KARI. Because the flight characteristics of tilt rotor are not well known, the developed scaled model would be helpful to evaluate flight control algorithm of a full scale aircraft. The tethered hover test has been performed in order to improve hover flight characteristics of tilt rotor aircraft prior to flight test of the small scaled model. During the tethered hover test, the performance of rotor speed governor, rate SAS (Stability Augmentation System) and control surface mixers have been evaluated. We expect that the results of real flight hover test would be quite same as tethered hover test. Therefore the tethered hover test results will reduce the risk of flight test properly by fixing some of hidden problems which might occur during the flight test. This paper presents the results of tethered hover test in detail and shows how it could be final ground test before flight test. The control mixer gain and rate SAS feedback gains were modified in order to get higher controllability and stability during the tethered hover flight. The rotor governor showed that it could keep rotor RPM constant with very small deviation even during severe pilot collective input change. The tethered hover test results gave pilot and engineers confirmation and experience about the scheduled flight test.

  • PDF

LUAV Software Certification Method using Checklists based on DO-178C (DO-178C 기반 체크리스트를 활용한 무인동력비행장치 소프트웨어 인증 방안)

  • Ji-Hun Kwon;Dong-Min Lee;Kyung-Min Park;Eun-Hee Lee;Sauk-Hoon Im;Yong-Hun Choi;Jong-Whoa Na
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • As seen in the case of the Boeing 737 Max accident, the proportion of aircraft software is rapidly increasing. However, it is vulnerable to safety issues. In case of domestic aircraft software, to operate a Light Unmanned Aerial Vehicle (LUAV) less than an empty weight of 150 kg, safety certification is required for an Ultra-Light Vehicle (ULV). However, software certification procedure is not included. Since the use of LUAVs has increased recently, software verification is required. This paper proposed a checklist of LUAV software that could be applied to LUAV referring DO-178C, an aviation software certification standard. A case study of applying the proposed checklist to the Model-based Development-based Helicopter Flight Control Computer (FCC) project currently used by domestic and foreign advanced companies and institutions was conducted.

Deep Learning Algorithm Training and Performance Analysis for Corridor Monitoring (회랑 감시를 위한 딥러닝 알고리즘 학습 및 성능분석)

  • Woo-Jin Jung;Seok-Min Hong;Won-Hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.776-781
    • /
    • 2023
  • K-UAM will be commercialized through maturity after 2035. Since the Urban Air Mobility (UAM) corridor will be used vertically separating the existing helicopter corridor, the corridor usage is expected to increase. Therefore, a system for monitoring corridors is also needed. In recent years, object detection algorithms have developed significantly. Object detection algorithms are largely divided into one-stage model and two-stage model. In real-time detection, the two-stage model is not suitable for being too slow. One-stage models also had problems with accuracy, but they have improved performance through version upgrades. Among them, YOLO-V5 improved small image object detection performance through Mosaic. Therefore, YOLO-V5 is the most suitable algorithm for systems that require real-time monitoring of wide corridors. Therefore, this paper trains YOLO-V5 and analyzes whether it is ultimately suitable for corridor monitoring.K-uam will be commercialized through maturity after 2035.

Study on Importance of Safety Management Factors in Aircraft Using Business (항공기 사용사업에서의 안전관리요소의 중요도에 관한 연구)

  • Byeon, A-Reum;Cho, Young-Jin;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.68-73
    • /
    • 2016
  • 2016, in total 53 corporations operate 160 aircraft. Since 2000, 52 accidents occurred in these corporations. This number takes 20.2% out of in total 257 accidents. Especially in 2016, in two(2) accidents, two(2) aircraft and people onboard were damaged. According to accident reports of aircraft using service, in most cases actions against common sense were connected to accidents. This means that attentions of managers or pilot would have protected accidents. On the basis of such background, this research analyses accidents cases of corporations operating aircraft by utilizing ahp. According to this anlysis, unlike scheduled and unscheduled airlines, pilots in command (0.109) and assisting crew (0.105) in Liveware have taken the most importance. Operational procedure (0.100) in Software and a controlling system (0.086) in Hardware have shown the second most importance. This result demonstrates that in case of corporations operating aircraft require safety management at different level than airlines.

Computational Vibration Analysis and Evaluation of a Tilt-Rotor Aircraft Considering Equipment Supporting Structures (틸트로터 항공기의 탑재장비 상세 지지구조 형상을 고려한 전산진동해석 및 평가)

  • Kim, Yu-Sung;Kim, Dong-Man;Yang, Jian-Ming;Lee, Jung-Jin;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.24-32
    • /
    • 2007
  • In this study, computational structural vibration analyses of a smart unmanned aerial vehicle (SUAV) with tilt-rotors due to dynamic hub loads have been conducted considering detailed supporting structures of installed equipments. Three-dimensional dynamic finite element model has been constructed for different fuel conditions and tilting angles corresponding to helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis is successfully established. Also, dynamic loads generated by rotating blades and wakes in the transient and forward flight conditions are calculated by unsteady computational fluid dynamics technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations of the vibration sensitive equipments are presented in detail. In addition, vibration characteristics of structures and installed equipments of which safe operation is normally limited by the vibration environment specifications are physically investigated for different flight conditions.

  • PDF

A Study on the Basic Algorithm of 3-D Navigation System of the Helicopter Utilizing TRN (TRN을 이용하는 헬리콥터 3차원 항법을 위한 기본 알고리즘에 관한 연구)

  • Kim, Eui-Hong;Jeon, Hyeong-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.130-134
    • /
    • 2007
  • 본 연구는 지형참조항법(TRN; Terrain Referenced Navigation)에 근거하는 헬리콥터 항법 시스템을 위한 기본 알고리즘을 개발하기 위해 수행되었다. 현재 본 연구에 위성항법장치(GPS; Global Positioning System)로부터의 정보(X, Y, Z 좌표)는 비행체가 항로를 비행하는 중 매 92.8m의 수평거리로 환산하여 수신되는 것으로 가정하였다. 비행체는 3차원 직교 좌표 체계(Cartesian coordinate system)로 표현되는 수치지형모델 (DTM; Digital Terrain Model)상에서 시점(Origination)-종점(Destination) 기법에 의해 항로를 결정한다. 본 시스템은 우선 조종사에게 지형의 사전 인식을 위해 시점-종점 주변 3차원 지형도와 항로의 종단면도를 보여준다. 본 시스템은 직접적인 지상 충돌을 피하기 위해 지형 여유 층면(terrain clearance floor)의 개념을 도입, 기복 지형 표면에 일정 높이의 완충 공간을 설정한다. 만약 비행체가 항행 중 완충 공간에 접근하게 되면 본 시스템은 즉시 경고음과 메시지를 발한다(Matlab 메뉴를 사용하였음). 물론 헬리콥터의 이착륙 시에는 불필요한 경고를 발생시키지 않기 위해 완충 공간 조정은 가능하다. 수치지형모델은 (주)첨성대가 확보하고 있는 3초 간격의 DTM을 채택, 작성하였다.

  • PDF

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.