• 제목/요약/키워드: Model Based Design

검색결과 12,158건 처리시간 0.051초

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

퍼지 모델을 위한 동적 상태 피드백 제어기 설계 (Dynamic State Feedback Controller Synthesis for Fuzzy Models)

  • 장욱;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.528-530
    • /
    • 1999
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex single input single output nonlinear systems. Firstly, the nonlinear system is represented by well-known Takagai-Sugeno (TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller usually is composed of two processes. One is to determine static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative of the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. One simulation example is given to show the effectiveness and feasibility of the proposed fuzzy controller design method.

  • PDF

Virtual Modeling 기반의 철근 콘크리트 교각 설계에 관한 연구 (A Study for Design of Reinforced Concrete Pier Based on Virtual Model)

  • 이헌민;박재근;김민희;최정호;신현목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.96-99
    • /
    • 2008
  • When the design modification is occurred, at present, design process based on 2-D spend more time and effort than that based on 3-D to modify related structural details. To improve and develop these processes, therefore, the design possibility of civil structures based on virtual model of 3-D must be investigated. We designed reinforced concrete pier of 3-D model, containing parameters. The parameters was defined as structural details like area of the section, reinforcement specification for design modification and structural analysis. In this paper, we researched about the processes modeling of reinforced concrete bridge pier based on parameters, the extracting data from the virtual model of 3-D, and the reflection of data to virtual model throughout structural analysis.

  • PDF

BIM 기반 협업에서의 상호운용성 향상을 위한 설계정보의 확장방안에 대한 기초적 연구 (A Basic Study on the Extension of Design Information to Improve Interoperability in BIM-based Collaborative Design Process)

  • 정재환;김진만;김성아
    • 한국BIM학회 논문집
    • /
    • 제5권1호
    • /
    • pp.25-34
    • /
    • 2015
  • In the initial step of BIM based architectural design process, workloads are increased and the decision making process becomes more complex than those of the conventional design process. Technologies regarding distribution, exchange, classification, verification of BIM data are fundamental elements of construct environment for information sharing based on BIM. Interoperability of BIM model data is another issue to integrate BIM model. To improve interoperability in BIM-based collaboration, a model for utilizing formal&unformal design informations is suggested. Futhermore, Prototyping the model and practical test is conducted for advancement of data exchange making design data richen.

UG/KF를 이용한 지능형 CAD 시스템의 지식 확장 및 지식 관리에 관한 연구 (A Study on an Extended Knowledge Model and a Management System of an Intelligent CAD System using UG/KF)

  • 배일주;이수홍;전흥재
    • 한국CDE학회논문집
    • /
    • 제10권1호
    • /
    • pp.49-60
    • /
    • 2005
  • Existing CAD systems have configured geometry data and it is necessary to extend the configured geometry into a knowledge-based system. An intelligent CAD system emerged to provide such a knowledge-based system. However the intelligent CAD system has a limited product model to represent various knowledge models. This paper presents a model, called extended intelligent CAD model, which can extend the product model of the intelligent CAD system into further detailed knowledge model. The extended intelligent CAD model includes a whole design process knowledge and an efficiency of the model has been verified via a knowledge based wiper design system. The model can improve the functionality and efficiency of the existing CAD systems.

Model-Based Prediction of the Population Proportion and Distribution Function Using a Logistic Regression

  • Park, Min-Gue
    • Communications for Statistical Applications and Methods
    • /
    • 제15권5호
    • /
    • pp.783-791
    • /
    • 2008
  • Estimation procedure of the finite population proportion and distribution function is considered. Based on a logistic regression model, an approximately model- optimal estimator is defined and conditions for the estimator to be design-consistent are given. Simulation study shows that the model-optimal design-consistent estimator defined under a logistic regression model performs well in estimating the finite population distribution function.

An artificial intelligence-based design model for circular CFST stub columns under axial load

  • Ipek, Suleyman;Erdogan, Aysegul;Guneyisi, Esra Mete
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.119-139
    • /
    • 2022
  • This paper aims to use the artificial intelligence approach to develop a new model for predicting the ultimate axial strength of the circular concrete-filled steel tubular (CFST) stub columns. For this, the results of 314 experimentally tested circular CFST stub columns were employed in the generation of the design model. Since the influence of the column diameter, steel tube thickness, concrete compressive strength, steel tube yield strength, and column length on the ultimate axial strengths of columns were investigated in these experimental studies, here, in the development of the design model, these variables were taken into account as input parameters. The model was developed using the backpropagation algorithm named Bayesian Regularization. The accuracy, reliability, and consistency of the developed model were evaluated statistically, and also the design formulae given in the codes (EC4, ACI, AS, AIJ, and AISC) and the previous empirical formulations proposed by other researchers were used for the validation and comparison purposes. Based on this evaluation, it can be expressed that the developed design model has a strong and reliable prediction performance with a considerably high coefficient of determination (R-squared) value of 0.9994 and a low average percent error of 4.61. Besides, the sensitivity of the developed model was also monitored in terms of dimensional properties of columns and mechanical characteristics of materials. As a consequence, it can be stated that for the design of the ultimate axial capacity of the circular CFST stub columns, a novel artificial intelligence-based design model with a good and robust prediction performance was proposed herein.

메타버스를 활용한 이공계 대학원생 팀 프로젝트 기반 교육 프로그램 개발 사례 연구 (A Study of Developing Graduate Student Team Project-based Learning Program in the Science and Technology Field Applying Metaverse Technology)

  • 전주희;김마리;김보경;강규리
    • 공학교육연구
    • /
    • 제26권6호
    • /
    • pp.19-29
    • /
    • 2023
  • This study aims to develop and apply a metaverse-based instructional design model for the education in science and technology. It analyzed the concept and characteristics of metaverse, existing non-contact education models, and major teaching strategies systematically. Based on the prior researches, an instructional design model using metaverse is developed that presents metaverse-related teaching strategies and design principles for the before-, during-, and after-lesson phases. Then, this model was applied to a project-based learning program, conducted a perception survey on instructors and learners, and revised the metaverse instructional design model based on the results of the survey. In the Metaverse Instructional Design Model, before-lesson phase is a physical and psychological preparation stage for class participation, which includes familiarization with the Metaverse learning environment, formation of expectations for education, and self-directed pre-learning. During the lesson, to effectively deliver the lesson content, it is necessary to build confidence in the learning environment, promote learning participation, provide reference materials, perform team projects and provide feedback, digest learning content, and transfer learning content. The after-lesson phase provides strategies for ongoing interaction between learners and mentors. This study introduces a new instructional design model that utilizes metaverse and shows the potential of metaverse-based education in science and technology. It also has important implications in that it provides practical guidelines for the effective design and implementation of metaverse-based education.

Design of Sliding Mode Fuzzy-Model-Based Controller Using Genetic Algorithms

  • Chang, Wook
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.615-620
    • /
    • 2001
  • This paper addresses the design of sliding model fuzzy-model-based controller using genetic algorithms. In general, the construction of fuzzy logic controllers has difficulties for the lack of systematic design procedure. To release this difficulties, the sliding model fuzzy-model-based controllers was presented by authors. In this proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Although, the stability and the performance is guaranteed by the proposed method, some design parameters have to be chosen by the designer manually. This problem can be solved by using genetic algorithms. The proposed method tunes the parameters of the controller, by which the reasonable accuracy and the control effort is achieved. The validity and the efficiency of the proposed method are verified through simulations.

  • PDF

복합 시설물의 nD 모델 호환을 위한 IFC 모델 확장개발 및 도면 생성 표현 체계에 관한 기초연구 (Development of IFC Model Extension and Drawing Representation Expression System for nD Model-Based Transposition of Complex Engineering Products and Services)

  • 김인한
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.393-402
    • /
    • 2006
  • The purpose of this study is to develop mechanisms of nD model-based design by the combination of 2D drawing standards and 3D building models from the current 2D and text-based design. The aim of this study can be archived by defining the 2D model extension definitions for the IFC model development and harmonizing existing 2D standards. The paper examines 1) 3D Representation of Building Element and Building Services element, and 2D Model extension of IFC2X.2, 2) Basic development of additional 2D element that should be added to IFC model, and 3) mapping method between current 2D standard and IFC2.X2. Following this approach, the interoperability problem between 3D model and 2D drawing can be solved and finally an extended data model could be developed.