DOI QR코드

DOI QR Code

An artificial intelligence-based design model for circular CFST stub columns under axial load

  • Received : 2021.11.10
  • Accepted : 2022.06.25
  • Published : 2022.07.10

Abstract

This paper aims to use the artificial intelligence approach to develop a new model for predicting the ultimate axial strength of the circular concrete-filled steel tubular (CFST) stub columns. For this, the results of 314 experimentally tested circular CFST stub columns were employed in the generation of the design model. Since the influence of the column diameter, steel tube thickness, concrete compressive strength, steel tube yield strength, and column length on the ultimate axial strengths of columns were investigated in these experimental studies, here, in the development of the design model, these variables were taken into account as input parameters. The model was developed using the backpropagation algorithm named Bayesian Regularization. The accuracy, reliability, and consistency of the developed model were evaluated statistically, and also the design formulae given in the codes (EC4, ACI, AS, AIJ, and AISC) and the previous empirical formulations proposed by other researchers were used for the validation and comparison purposes. Based on this evaluation, it can be expressed that the developed design model has a strong and reliable prediction performance with a considerably high coefficient of determination (R-squared) value of 0.9994 and a low average percent error of 4.61. Besides, the sensitivity of the developed model was also monitored in terms of dimensional properties of columns and mechanical characteristics of materials. As a consequence, it can be stated that for the design of the ultimate axial capacity of the circular CFST stub columns, a novel artificial intelligence-based design model with a good and robust prediction performance was proposed herein.

Keywords

References

  1. Abed, F., AlHamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005.
  2. ACI-318R (2005), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills, MI, USA.
  3. AIJ (2001), Standards for Structural Calculation of Steel Reinforced Concrete Structures, (5th Edition), Architectural Institute of Japan, Tokyo, Japan.
  4. AISC (2016) Load and Resistance Factor Design Specification, For Structural Steel Buildings, American Institute of Steel Construction; Chicago, USA.
  5. Alrebeh, S.K. and Ekmekyapar, T. (2019), "Structural behavior of concrete-filled steel tube short columns stiffened by external and internal continuous spirals", Structures, 22, 98-108. https://doi.org/10.1016/j.istruc.2019.07.001.
  6. AS3600 (2001), Concrete structures, Standards Association of Australia; Sydney, Australia.
  7. Chang, X., Fu, L., Zhao, H.B. and Zhang, Y.B. (2013), "Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes", Thin-Walled Struct., 73, 273-280. https://doi.org/10.1016/j.tws.2013.08.018.
  8. Chen, S., Zhang, R., Jia, L.J., Wang, J.Y. and Gu, P. (2018), "Structural behavior of UHPC filled steel tube columns under axial loading", Thin-Walled Struct., 130, 550-563. https://doi.org/10.1016/j.tws.2018.06.016.
  9. D'Aniello, M., Guneyisi, E. M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Walled Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015.
  10. Ekmekyapar, T. and Al-Eliwi, B.J.M. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin-Walled Struct., 105, 220-230. http://dx.doi.org/10.1016/j.tws.2016.04.004.
  11. Elmas, C. (2003), Yapay sinir aglari, 21-39, Seckin Yayincilik, Ankara, Turkey.
  12. Ergezer, H., Dikmen, M. and Ozdemir, E. (2003), "Yapay sinir aglari ve tanima sistemleri", Pivolka, 2(6), 14-17.
  13. Ersoy, U., Ozcebe, G. and Tankut, T. (2010), Reinforced concrete, METU press, Ankara, Turkey.
  14. Eurocode 4 (2004), Design of composite steel and concrete structures - Part 1.1: general rules and rules for buildings; ENV 1994-1-1, British Standard Institution, London, United Kingdom.
  15. Evirgen, B., Tuncan, A. and Taskin, K. (2014), "Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression", Thin-Walled Struct., 80, 46-56. http://dx.doi.org/10.1016/j.tws.2014.02.022.
  16. FIB (2001), Punching of Structural Concrete Slabs, Fib Bulletin 12, Fib, Lausanne, Switzerland. http://doi.org/10.35789/fib.BULL.0012.
  17. Gao, S., Peng, Z., Guo, L., Fu, F. and Wang, Y. (2020), "Compressive behavior of circular concrete-filled steel tubular columns under freeze-thaw cycles", J. Constr. Steel Res., 166, 105934. https://doi.org/10.1016/j.jcsr.2020.105934.
  18. Gardner, N.J. and Jacobson, E.R. (1967), "Structural behavior of concrete-filled steel tubes", J. Am. Concr. Inst., 64(7), 404-412.
  19. Gholizadeh, S., Pirmoz, A. and Attarnejad, R. (2011), "Assessment of load carrying capacity of castellated steel beams by neural networks", J. Constr. Steel Res., 67, 770-779. https://doi.org/10.1016/j.jcsr.2011.01.001.
  20. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60, 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  21. Goode, C.D. and Narayanan, R. (1997), "Design of concrete filled steel tubes to EC4", concrete filled steel tubes: A comparison of international codes and practices", Seminar of Association for International Cooperation and Research in Steel-Concrete Composite Structures, Innsbruck, September.
  22. Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.
  23. Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Constr. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022.
  24. Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16, 99-104. https://doi.org/10.1007/s13296-016-3009-9.
  25. Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63, 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004.
  26. Han L.H. and Yao, G.H. (2004), "Experimental behaviour of thinwalled hollow structural steel (HSS) columns filled with selfconsolidating concrete (SCC)", Thin-Walled Struct., 42, 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016.
  27. Han, L.H. and Yao, G.H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Constr. Steel Res., 59, 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0.
  28. Han, L.H., Yao, G.F. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61, 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
  29. Haykin, S. (2000), Neural Networks: A Comprehensive Foundation, Mac-Millan College Publications Cooperation, New Jersey, USA.
  30. He, L., Zhao, Y. and Lin, S. (2018), "Experimental study on axially compressed circular CFST columns with improved confinement effect", J. Constr. Steel Res., 140, 74-81. https://doi.org/10.1016/j.jcsr.2017.10.025.
  31. Hebb, D.O. (1949), The Organization of Behavior, John Wiley and Sons Inc., New York, USA.
  32. Ho, J.C.M. and Lai, M.H. (2013), "Behaviour of uni-axially loaded CFST columns confined by tie bars", J. Constr. Steel Res., 83, 37-50. https://doi.org/10.1016/j.jcsr.2012.12.014.
  33. Ho, J.C.M. and Lai, M.H. (2013), "Behaviour of uni-axially loaded CFST columns connected by tie bars", J. Constr. Steel Res., 83, 37-50. https://doi.org/10.1016/j.jcsr.2012.12.014.
  34. Hosseini, F., Khaloo, A. and Tajalli, M.A. (2011), "Seismic Performance of Structures with CFST Columns and Steel Beams", Proc. of the Conference: 1st International Conference on Urban Construction in the Vicinity of Active Faults (ICCVAF), Tabriz, December.
  35. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng. - ASCE, 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
  36. Huang, F., Yu, X., Chen, B. and Li, J. (2016), "Study on preloading reduction of ultimate load of circular concrete-filled steel tubular columns", Thin-Walled Struct., 98, 454-464. http://dx.doi.org/10.1016/j.tws.2015.10.015.
  37. Huo, J., Huang, G. and Xiao, Y. "Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns", J. Constr. Steel Res., 65, 1664-1676. https://doi.org/10.1016/j.jcsr.2009.04.022.
  38. Ipek, S. and Guneyisi, E.M. (2020), "Nonlinear finite element analysis of double skin composite columns subjected to axial loading", Arch. Civ. Mech. Eng., 20, 9. https://doi.org/10.1007/s43452-020-0012-x.
  39. Ipek, S. and Guneyisi, E.M. (2021), "Nonlinear analysis of concrete-filled single and double skin steel tubular tapered columns under axial loading", Smart. Struct. Syst., 27(4), 571-592. https://doi.org/10.12989/sss.2021.27.4.571.
  40. Ipek, S. and Guneyisi, E.M. (2022), "Application of Eurocode 4 design provisions and development of new predictive models for eccentrically loaded CFST elliptical columns", J. Build. Eng., 48, 103945. https://doi.org/10.1016/j.jobe.2021.103945.
  41. Ipek, S., Erdogan, A. and Guneyisi, E.M. (2021), "Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section", J. Build. Eng., 38, 103945. https://doi.org/10.1016/j.jobe.2021.102200.
  42. Ipek, S., Guneyisi, E.M., Mermerdas, K. and Algin, Z. (2021), "Optimization and modeling of axial strength of concrete-filled double skin steel tubular columns using response surface and neural-network methods", J. Build. Eng., 43, 103128. https://doi.org/10.1016/j.jobe.2021.103128.
  43. Jegadesh, J.S.S. and Jayalekshmi, S. (2015), "Application of artificial neural network for calculation of axial capacity of circular concrete filled steel tubular columns", Int. J. Earth Sci. Eng., 8(2), 35-42.
  44. Kalemi, B. (2016), "Numerical modeling and assessment of circular concrete-filled steel tubular members", M.Sc. Dissertation, Istituto Universitario di Studi Superior, Pavia, Italy.
  45. Kang, H.S., Lim, S.H., Moon, T.S. and Stiemer, S.F. (2005), "Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads", Steel Compos. Struct., 5(1), 17-34. https://doi.org/10.12989/scs.2005.5.1.017.
  46. Kato, B. (1995), "Compressive strength and deformation capacity of concrete-filled tubular stub columns (Strength and rotation capacity of concrete-filled tubular columns, Part 1)", J. Struct. Constr. Eng. - AIJ, 468, 183-191. https://doi.org/10.3130/aijs.60.183.
  47. Kumari, B. (2018), "Concrete filled steel tubular (CFST) columns in composite structures", J. Electr. Electron. Eng., 13(1), 11-18.
  48. Lagaros, N.D. and Papadrakakis, M. (2012), "Applied soft computing for optimum design of structures", Struct. Multidiscipl. Optim., 45, 787-799. https://doi.org/10.1007/s00158-011-0741-9.
  49. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64, 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012.
  50. Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H. and Choi, S.M. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67, 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003.
  51. Lin, C.Y. (1988), "Axial capacity of concrete infilled cold-formed steel columns", Proceedings of Ninth International Specialty Conference on Cold-Formed Steel Structures, 443-457. St. Louis, Missouri, U.S.A., November.
  52. Lu, Z.H. and Zhao, Y.G. (2010), "Suggested empirical models for the axial capacity of circular CFT stub column", J. Constr. Steel Res., 66, 850-862. https://doi.org/10.1016/j.jcsr.2009.12.014.
  53. Luksha, L.K. and Nesterovich, A.P. (1991), "Strength testing of larger-diameter concrete filled steel tubular members", Proceeding of 3rd International Conference on Steel-concrete Composite Structures, 67-70, Fukuoka, September.
  54. MathWorks. (2018), Help Center for MATLAB; Mathworks Inc.; MA, USA. http://www.mathworks.com/help/.
  55. Mermerdas, K. and Arbili, M.M. "Explicit formulation of drying and autogenous shrinkage of concretes with binary and ternary blends of silica fume and fly ash", Constr. Build. Mater., 94, 371-379. https://doi.org/10.1016/j.conbuildmat.2015.07.074.
  56. Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, (2nd Edition), Prentice Hall, New Jersey, USA.
  57. Morino, S., Uchikoshi, M. and Yamaguchi, I. (2001), "Concretefilled steel tube column system-its advantages", Steel Struct., 1(1), 33-44. https://doi.org/10.12989/scs.2001.1.1.033
  58. O'Shea, M.D. and Bridge, R.Q. (1994), "Tests of thin-walled concrete-filled steel tubes", In: Proceedings of Twelfth International Specialty Conference on Cold-Formed Steel Structures, 399-419, St. Louis, Missouri, U.S.A., October.
  59. O'Shea, M.D., Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
  60. Ren, Q.X., Zhou, K., Hou, C., Tao, Z. and Han, L.H. (2018), "Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments", Thin-Walled Struct., 124, 291-302. https://doi.org/10.1016/j.tws.2017.12.006.
  61. Roeder, C.W., Lehman, D.E. and Bishop, E. (2010) "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263.
  62. Saisho, M., Abe, T. and Nakaya, K. (1999) "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng. - AIJ, 523(1), 133-140. https://doi.org/10.3130/aijs.64.133_4.
  63. Sakino, K. and Hayashi, H. (1991), "Behavior of concrete filled steel tubular stub columns under concentric loading", Proceeding of 3rd International Conference on Steel-concrete Composite Structures, 25-30, Fukuoka, September.
  64. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng. - ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  65. Schalkoff, R.J. (1997), Artificial Neural Networks, McGraw-Hill, New York, USA.
  66. Shakir-Khalil, H. and Zeghiche, J. (1989), "Experimental behaviour of concrete-filled rolled rectangular hollowsection columns", Struct. Eng., 67, 346-353.
  67. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57, 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9.
  68. Susac, M. Z., Sarlija, N., Bensic, M. and Tortorelli, S. (2005), "Selecting neural network architecture for investment profitability predictions", J. Inf. Organ. Sci., 29(2), 83-95. https://hrcak.srce.hr/78281.
  69. Susantha, K.A.S., Ge, H. and Usami, T. (2001), "Uniaxial stressstrain relationship of concrete confined by various shaped steel tubes", Eng. Struct., 23, 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7.
  70. Tan, K. (2006), "Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete", J. Southwest Uni. Sci. Tech., 21(2), 7-10.
  71. Tao, Z., Han, L.H. and Wang, L.L. (2007), "Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire", J. Constr. Steel Res., 63, 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007.
  72. Tran, V.L., Thai, D.K. and Kim, S.E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.
  73. Tsuda, K., Matsui, C. and Ishibashi, Y. (1995), "Stability design of slender concrete filled steel tubular columns", Proc. of the Fifth Asia-Pacific Conference on Structural Engineering and Construction (EASEC-5), 439-444.
  74. Wang, W., Ma, H., Li, Z. and Tang, Z. (2017), "Size effect in circular concrete-filled steel tubes with different diameter-tothickness ratios under axial compression", Eng. Struct., 151, 554-567. http://dx.doi.org/10.1016/j.engstruct.2017.08.022.
  75. Wang, W.H., Han, L.H., Li, W. and Jia, Y.H. (2014), "Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate", Constr. Build. Mater., 51, 352-363. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.049.
  76. Wei, J., Luo, X., Lai, Z. and Varma, A.H. (2020), "Experimental behavior and design of high-strength circular concrete-filled steel tube short columns", J. Struct. Eng., 146(1), 04019184. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002474.
  77. Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017), "Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials", Eng. Struct., 136, 494-510. http://dx.doi.org/10.1016/j.engstruct.2017.01.037.
  78. Yamamoto, T., Kawaguchi, J. and Morino, S. "Experimental study of the size effect on the behaviour of concrete filled circular steel tube columns under axial compression", J. Struct. Constr. Eng. - AIJ, 561, 237-244. https://doi.org/10.3130/aijs.67.237_2.
  79. Yan, J.B., Wan, T. and Dong, X. (2020), "Compressive behaviours of circular concrete-filled steel tubes exposed to lowtemperature environment", Constr. Build. Mater., 245, 118460. https://doi.org/10.1016/j.conbuildmat.2020.118460.
  80. Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular column", Thin- Walled Struct., 46, 362-370. https://doi.org/10.1016/j.tws.2007.10.001.
  81. Yu, Z., Ding, F. and Lin, S. "Researches on behavior of highperformance concrete filled tubular steel short columns", J. Build. Eng., 23(2), 41-47.
  82. Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.
  83. Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006.
  84. Zhang, S. and Wang, Y. (2004), "Failure modes of short columns of high-strength concrete filled steel tubes", China Civ. Eng. J., 37(9), 1-10.
  85. Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8, 93-102. https://doi.org/10.1002/pse.216.