Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.1.119

An artificial intelligence-based design model for circular CFST stub columns under axial load  

Ipek, Suleyman (Department of Architecture, Bingol University)
Erdogan, Aysegul (Department of Civil Engineering, Gaziantep University)
Guneyisi, Esra Mete (Department of Civil Engineering, Gaziantep University)
Publication Information
Steel and Composite Structures / v.44, no.1, 2022 , pp. 119-139 More about this Journal
Abstract
This paper aims to use the artificial intelligence approach to develop a new model for predicting the ultimate axial strength of the circular concrete-filled steel tubular (CFST) stub columns. For this, the results of 314 experimentally tested circular CFST stub columns were employed in the generation of the design model. Since the influence of the column diameter, steel tube thickness, concrete compressive strength, steel tube yield strength, and column length on the ultimate axial strengths of columns were investigated in these experimental studies, here, in the development of the design model, these variables were taken into account as input parameters. The model was developed using the backpropagation algorithm named Bayesian Regularization. The accuracy, reliability, and consistency of the developed model were evaluated statistically, and also the design formulae given in the codes (EC4, ACI, AS, AIJ, and AISC) and the previous empirical formulations proposed by other researchers were used for the validation and comparison purposes. Based on this evaluation, it can be expressed that the developed design model has a strong and reliable prediction performance with a considerably high coefficient of determination (R-squared) value of 0.9994 and a low average percent error of 4.61. Besides, the sensitivity of the developed model was also monitored in terms of dimensional properties of columns and mechanical characteristics of materials. As a consequence, it can be stated that for the design of the ultimate axial capacity of the circular CFST stub columns, a novel artificial intelligence-based design model with a good and robust prediction performance was proposed herein.
Keywords
CFST column; code formula; design model; artificial neural network; stub column;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 AISC (2016) Load and Resistance Factor Design Specification, For Structural Steel Buildings, American Institute of Steel Construction; Chicago, USA.
2 Chang, X., Fu, L., Zhao, H.B. and Zhang, Y.B. (2013), "Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes", Thin-Walled Struct., 73, 273-280. https://doi.org/10.1016/j.tws.2013.08.018.   DOI
3 Ekmekyapar, T. and Al-Eliwi, B.J.M. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin-Walled Struct., 105, 220-230. http://dx.doi.org/10.1016/j.tws.2016.04.004.   DOI
4 Ersoy, U., Ozcebe, G. and Tankut, T. (2010), Reinforced concrete, METU press, Ankara, Turkey.
5 FIB (2001), Punching of Structural Concrete Slabs, Fib Bulletin 12, Fib, Lausanne, Switzerland. http://doi.org/10.35789/fib.BULL.0012.   DOI
6 Ipek, S., Guneyisi, E.M., Mermerdas, K. and Algin, Z. (2021), "Optimization and modeling of axial strength of concrete-filled double skin steel tubular columns using response surface and neural-network methods", J. Build. Eng., 43, 103128. https://doi.org/10.1016/j.jobe.2021.103128.   DOI
7 Jegadesh, J.S.S. and Jayalekshmi, S. (2015), "Application of artificial neural network for calculation of axial capacity of circular concrete filled steel tubular columns", Int. J. Earth Sci. Eng., 8(2), 35-42.
8 He, L., Zhao, Y. and Lin, S. (2018), "Experimental study on axially compressed circular CFST columns with improved confinement effect", J. Constr. Steel Res., 140, 74-81. https://doi.org/10.1016/j.jcsr.2017.10.025.   DOI
9 Han, L.H. and Yao, G.H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Constr. Steel Res., 59, 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0.   DOI
10 Han, L.H., Yao, G.F. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61, 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004.   DOI
11 Hebb, D.O. (1949), The Organization of Behavior, John Wiley and Sons Inc., New York, USA.
12 Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64, 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012.   DOI
13 Kalemi, B. (2016), "Numerical modeling and assessment of circular concrete-filled steel tubular members", M.Sc. Dissertation, Istituto Universitario di Studi Superior, Pavia, Italy.
14 Kato, B. (1995), "Compressive strength and deformation capacity of concrete-filled tubular stub columns (Strength and rotation capacity of concrete-filled tubular columns, Part 1)", J. Struct. Constr. Eng. - AIJ, 468, 183-191. https://doi.org/10.3130/aijs.60.183.   DOI
15 Kumari, B. (2018), "Concrete filled steel tubular (CFST) columns in composite structures", J. Electr. Electron. Eng., 13(1), 11-18.
16 Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8, 93-102. https://doi.org/10.1002/pse.216.   DOI
17 Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.   DOI
18 Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006.   DOI
19 Zhang, S. and Wang, Y. (2004), "Failure modes of short columns of high-strength concrete filled steel tubes", China Civ. Eng. J., 37(9), 1-10.
20 Hosseini, F., Khaloo, A. and Tajalli, M.A. (2011), "Seismic Performance of Structures with CFST Columns and Steel Beams", Proc. of the Conference: 1st International Conference on Urban Construction in the Vicinity of Active Faults (ICCVAF), Tabriz, December.
21 Mermerdas, K. and Arbili, M.M. "Explicit formulation of drying and autogenous shrinkage of concretes with binary and ternary blends of silica fume and fly ash", Constr. Build. Mater., 94, 371-379. https://doi.org/10.1016/j.conbuildmat.2015.07.074.   DOI
22 Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H. and Choi, S.M. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67, 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003.   DOI
23 Lu, Z.H. and Zhao, Y.G. (2010), "Suggested empirical models for the axial capacity of circular CFT stub column", J. Constr. Steel Res., 66, 850-862. https://doi.org/10.1016/j.jcsr.2009.12.014.   DOI
24 Luksha, L.K. and Nesterovich, A.P. (1991), "Strength testing of larger-diameter concrete filled steel tubular members", Proceeding of 3rd International Conference on Steel-concrete Composite Structures, 67-70, Fukuoka, September.
25 Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, (2nd Edition), Prentice Hall, New Jersey, USA.
26 O'Shea, M.D. and Bridge, R.Q. (1994), "Tests of thin-walled concrete-filled steel tubes", In: Proceedings of Twelfth International Specialty Conference on Cold-Formed Steel Structures, 399-419, St. Louis, Missouri, U.S.A., October.
27 Susac, M. Z., Sarlija, N., Bensic, M. and Tortorelli, S. (2005), "Selecting neural network architecture for investment profitability predictions", J. Inf. Organ. Sci., 29(2), 83-95. https://hrcak.srce.hr/78281.
28 Morino, S., Uchikoshi, M. and Yamaguchi, I. (2001), "Concretefilled steel tube column system-its advantages", Steel Struct., 1(1), 33-44.   DOI
29 MathWorks. (2018), Help Center for MATLAB; Mathworks Inc.; MA, USA. http://www.mathworks.com/help/.
30 Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng. - ASCE, 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).   DOI
31 Tan, K. (2006), "Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete", J. Southwest Uni. Sci. Tech., 21(2), 7-10.
32 Tao, Z., Han, L.H. and Wang, L.L. (2007), "Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire", J. Constr. Steel Res., 63, 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007.   DOI
33 Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.   DOI
34 Gao, S., Peng, Z., Guo, L., Fu, F. and Wang, Y. (2020), "Compressive behavior of circular concrete-filled steel tubular columns under freeze-thaw cycles", J. Constr. Steel Res., 166, 105934. https://doi.org/10.1016/j.jcsr.2020.105934.   DOI
35 Gardner, N.J. and Jacobson, E.R. (1967), "Structural behavior of concrete-filled steel tubes", J. Am. Concr. Inst., 64(7), 404-412.
36 Gholizadeh, S., Pirmoz, A. and Attarnejad, R. (2011), "Assessment of load carrying capacity of castellated steel beams by neural networks", J. Constr. Steel Res., 67, 770-779. https://doi.org/10.1016/j.jcsr.2011.01.001.   DOI
37 Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60, 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.   DOI
38 Goode, C.D. and Narayanan, R. (1997), "Design of concrete filled steel tubes to EC4", concrete filled steel tubes: A comparison of international codes and practices", Seminar of Association for International Cooperation and Research in Steel-Concrete Composite Structures, Innsbruck, September.
39 Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Constr. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022.   DOI
40 Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16, 99-104. https://doi.org/10.1007/s13296-016-3009-9.   DOI
41 Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63, 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004.   DOI
42 Wei, J., Luo, X., Lai, Z. and Varma, A.H. (2020), "Experimental behavior and design of high-strength circular concrete-filled steel tube short columns", J. Struct. Eng., 146(1), 04019184. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002474.   DOI
43 ACI-318R (2005), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills, MI, USA.
44 AIJ (2001), Standards for Structural Calculation of Steel Reinforced Concrete Structures, (5th Edition), Architectural Institute of Japan, Tokyo, Japan.
45 Alrebeh, S.K. and Ekmekyapar, T. (2019), "Structural behavior of concrete-filled steel tube short columns stiffened by external and internal continuous spirals", Structures, 22, 98-108. https://doi.org/10.1016/j.istruc.2019.07.001.   DOI
46 Tsuda, K., Matsui, C. and Ishibashi, Y. (1995), "Stability design of slender concrete filled steel tubular columns", Proc. of the Fifth Asia-Pacific Conference on Structural Engineering and Construction (EASEC-5), 439-444.
47 Wang, W., Ma, H., Li, Z. and Tang, Z. (2017), "Size effect in circular concrete-filled steel tubes with different diameter-tothickness ratios under axial compression", Eng. Struct., 151, 554-567. http://dx.doi.org/10.1016/j.engstruct.2017.08.022.   DOI
48 D'Aniello, M., Guneyisi, E. M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Walled Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015.   DOI
49 AS3600 (2001), Concrete structures, Standards Association of Australia; Sydney, Australia.
50 Chen, S., Zhang, R., Jia, L.J., Wang, J.Y. and Gu, P. (2018), "Structural behavior of UHPC filled steel tube columns under axial loading", Thin-Walled Struct., 130, 550-563. https://doi.org/10.1016/j.tws.2018.06.016.   DOI
51 Elmas, C. (2003), Yapay sinir aglari, 21-39, Seckin Yayincilik, Ankara, Turkey.
52 Ergezer, H., Dikmen, M. and Ozdemir, E. (2003), "Yapay sinir aglari ve tanima sistemleri", Pivolka, 2(6), 14-17.
53 Eurocode 4 (2004), Design of composite steel and concrete structures - Part 1.1: general rules and rules for buildings; ENV 1994-1-1, British Standard Institution, London, United Kingdom.
54 Evirgen, B., Tuncan, A. and Taskin, K. (2014), "Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression", Thin-Walled Struct., 80, 46-56. http://dx.doi.org/10.1016/j.tws.2014.02.022.   DOI
55 Huo, J., Huang, G. and Xiao, Y. "Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns", J. Constr. Steel Res., 65, 1664-1676. https://doi.org/10.1016/j.jcsr.2009.04.022.   DOI
56 Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017), "Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials", Eng. Struct., 136, 494-510. http://dx.doi.org/10.1016/j.engstruct.2017.01.037.   DOI
57 Yan, J.B., Wan, T. and Dong, X. (2020), "Compressive behaviours of circular concrete-filled steel tubes exposed to lowtemperature environment", Constr. Build. Mater., 245, 118460. https://doi.org/10.1016/j.conbuildmat.2020.118460.   DOI
58 Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular column", Thin- Walled Struct., 46, 362-370. https://doi.org/10.1016/j.tws.2007.10.001.   DOI
59 Ipek, S. and Guneyisi, E.M. (2020), "Nonlinear finite element analysis of double skin composite columns subjected to axial loading", Arch. Civ. Mech. Eng., 20, 9. https://doi.org/10.1007/s43452-020-0012-x.   DOI
60 Ipek, S. and Guneyisi, E.M. (2021), "Nonlinear analysis of concrete-filled single and double skin steel tubular tapered columns under axial loading", Smart. Struct. Syst., 27(4), 571-592. https://doi.org/10.12989/sss.2021.27.4.571.   DOI
61 Ipek, S. and Guneyisi, E.M. (2022), "Application of Eurocode 4 design provisions and development of new predictive models for eccentrically loaded CFST elliptical columns", J. Build. Eng., 48, 103945. https://doi.org/10.1016/j.jobe.2021.103945.   DOI
62 Huang, F., Yu, X., Chen, B. and Li, J. (2016), "Study on preloading reduction of ultimate load of circular concrete-filled steel tubular columns", Thin-Walled Struct., 98, 454-464. http://dx.doi.org/10.1016/j.tws.2015.10.015.   DOI
63 Abed, F., AlHamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005.   DOI
64 Han L.H. and Yao, G.H. (2004), "Experimental behaviour of thinwalled hollow structural steel (HSS) columns filled with selfconsolidating concrete (SCC)", Thin-Walled Struct., 42, 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016.   DOI
65 Haykin, S. (2000), Neural Networks: A Comprehensive Foundation, Mac-Millan College Publications Cooperation, New Jersey, USA.
66 Kang, H.S., Lim, S.H., Moon, T.S. and Stiemer, S.F. (2005), "Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads", Steel Compos. Struct., 5(1), 17-34. https://doi.org/10.12989/scs.2005.5.1.017.   DOI
67 Lagaros, N.D. and Papadrakakis, M. (2012), "Applied soft computing for optimum design of structures", Struct. Multidiscipl. Optim., 45, 787-799. https://doi.org/10.1007/s00158-011-0741-9.   DOI
68 Lin, C.Y. (1988), "Axial capacity of concrete infilled cold-formed steel columns", Proceedings of Ninth International Specialty Conference on Cold-Formed Steel Structures, 443-457. St. Louis, Missouri, U.S.A., November.
69 Ho, J.C.M. and Lai, M.H. (2013), "Behaviour of uni-axially loaded CFST columns confined by tie bars", J. Constr. Steel Res., 83, 37-50. https://doi.org/10.1016/j.jcsr.2012.12.014.   DOI
70 Ho, J.C.M. and Lai, M.H. (2013), "Behaviour of uni-axially loaded CFST columns connected by tie bars", J. Constr. Steel Res., 83, 37-50. https://doi.org/10.1016/j.jcsr.2012.12.014.   DOI
71 Ipek, S., Erdogan, A. and Guneyisi, E.M. (2021), "Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section", J. Build. Eng., 38, 103945. https://doi.org/10.1016/j.jobe.2021.102200.   DOI
72 Susantha, K.A.S., Ge, H. and Usami, T. (2001), "Uniaxial stressstrain relationship of concrete confined by various shaped steel tubes", Eng. Struct., 23, 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7.   DOI
73 Tran, V.L., Thai, D.K. and Kim, S.E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.   DOI
74 O'Shea, M.D., Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).   DOI
75 Wang, W.H., Han, L.H., Li, W. and Jia, Y.H. (2014), "Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate", Constr. Build. Mater., 51, 352-363. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.049.   DOI
76 Yamamoto, T., Kawaguchi, J. and Morino, S. "Experimental study of the size effect on the behaviour of concrete filled circular steel tube columns under axial compression", J. Struct. Constr. Eng. - AIJ, 561, 237-244. https://doi.org/10.3130/aijs.67.237_2.   DOI
77 Yu, Z., Ding, F. and Lin, S. "Researches on behavior of highperformance concrete filled tubular steel short columns", J. Build. Eng., 23(2), 41-47.
78 Saisho, M., Abe, T. and Nakaya, K. (1999) "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng. - AIJ, 523(1), 133-140. https://doi.org/10.3130/aijs.64.133_4.   DOI
79 Ren, Q.X., Zhou, K., Hou, C., Tao, Z. and Han, L.H. (2018), "Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments", Thin-Walled Struct., 124, 291-302. https://doi.org/10.1016/j.tws.2017.12.006.   DOI
80 Roeder, C.W., Lehman, D.E. and Bishop, E. (2010) "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263.   DOI
81 Sakino, K. and Hayashi, H. (1991), "Behavior of concrete filled steel tubular stub columns under concentric loading", Proceeding of 3rd International Conference on Steel-concrete Composite Structures, 25-30, Fukuoka, September.
82 Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng. - ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).   DOI
83 Schalkoff, R.J. (1997), Artificial Neural Networks, McGraw-Hill, New York, USA.
84 Shakir-Khalil, H. and Zeghiche, J. (1989), "Experimental behaviour of concrete-filled rolled rectangular hollowsection columns", Struct. Eng., 67, 346-353.
85 Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57, 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9.   DOI