• Title/Summary/Keyword: Mode-locking

Search Result 122, Processing Time 0.036 seconds

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Spectral Comb Stabilization of a Mode-Locked Semiconductor Fiber Ring Laser by External Optical Injection (외부 광주입에 의한 모드 잠금된 고리형 광섬유 레이저의 스펙트럼 빗살 안정화)

  • Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.313-318
    • /
    • 2011
  • The effects of external continuous wave optical injection on spectral comb of a 10 GHz harmonically mode-locked semiconductor fiber ring laser have been studied. Greater than 40 dB spectral deeps in the spectral comb and greater than 30 dB reduction of supermode beating noise are achieved by injecting coherent light with ~ 100 KHz spectral width. To examine the possibility of using a low-cost seed source, we replace the seed source by a DFB laser with ~ 10 MHz spectral width. It shows similar spectral deeps, however supermode beating noise enhancement, rather than reduction, is observed.

High-power SESAM Mode-locked Yb:KGW Laser with Different Group-velocity Dispersions

  • Park, Byeong-Jun;Song, Ji-Yeon;Lee, Seong-Yeon;Yee, Ki-Ju
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.407-412
    • /
    • 2022
  • We report on a diode-laser-pumped mode-locked Yb:KGW laser system, which delivers ultrashort pulses down to 89 fs at a repetition rate of 63 MHz, with an average power of up to 5.6 W. A fiber-coupled diode laser at 981 nm, operated with a compact driver, is used to optically pump the gain crystal via an off-axis parabolic mirror. A semiconductor saturable-absorber mirror is used to initiate the pulsed operation. Laser characteristics such as the pulse duration, spectrum bandwidth, and output power are investigated by varying the intracavity dispersions via changing the number of bounces between negative-dispersive mirrors within the cavity. Short pulses with a duration of 89 fs, a center wavelength of 1,027 nm, and 3.6 W of output power are produced at a group-velocity dispersion (GVD) of -3,300 fs2. As the negative GVD increases, the pulse duration lengthens but the output power at the single-pulse condition can be enhanced, reaching 5.6 W at a GVD of -6,600 fs2. Because of pulse broadening at high negative GVDs, the highest peak intensity is achievable at a moderate GVD with our system.

A DLL-Based Multi-Clock Generator Having Fast-Relocking and Duty-Cycle Correction Scheme for Low Power and High Speed VLSIs (저전력 고속 VLSI를 위한 Fast-Relocking과 Duty-Cycle Correction 구조를 가지는 DLL 기반의 다중 클락 발생기)

  • Hwang Tae-Jin;Yeon Gyu-Sung;Jun Chi-Hoon;Wee Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.23-30
    • /
    • 2005
  • This paper describes a DLL(delay locked loop)-based multi-clock generator having the lower active stand-by power as well as a fast relocking after re-activating the DLL. for low power and high speed VLSI chip. It enables a frequency multiplication using frequency multiplier scheme and produces output clocks with 50:50 duty-ratio regardless of the duty-ratio of system clock. Also, digital control scheme using DAC enables a fast relocking operation after exiting a standby-mode of the clock system which was obtained by storing analog locking information as digital codes in a register block. Also, for a clock multiplication, it has a feed-forward duty correction scheme using multiphase and phase mixing corrects a duty-error of system clock without requiring additional time. In this paper, the proposed DLL-based multi-clock generator can provides a synchronous clock to an external clock for I/O data communications and multiple clocks of slow and high speed operations for various IPs. The proposed DLL-based multi-clock generator was designed by the area of $1796{\mu}m\times654{\mu}m$ using $0.35-{\mu}m$ CMOS process and has $75MHz\~550MHz$ lock-range and maximum multiplication frequency of 800 MHz below 20psec static skew at 2.3v supply voltage.

Single Longitudinal Mode Operation of a Pulsed Dye Laser Injection-seeded with a CW Ring Dye Laser (인젝션 록킹 방법에 의한 펄스 색소레이저의 단일 종모우드 발진)

  • 김재완;공홍진;한재원;박승남
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.84-89
    • /
    • 1994
  • A tunable pulsed dye laser was operated in a single longitudinal mode by injection locking with a cw ring dye laser. A doubled Nd:YAG laser was used as the pumping source. Phase sensitive detection technique was applied to maintain the required match between the master laser frequency and the slave resonator cavity length. The fluctuation of the center frequency of the pulsed laser was < 10 MHz, and the pulse duration (FWHM) was 6 ns. The linewidth measured by scanning confocal interferometer was 130 MHz. When pumped by 50 mJ of the doubled Nd:YAG laser, the output energy of the pulsed dye laser was 2 mJ and the peak power was 330 kW. 30 kW.

  • PDF

Passively Mode-Locked 1.93-㎛ All-Fiberized Femtosecond MOPA Laser Using a Gold-Deposited Side-Polished Fiber (금 증착 측면연마 광섬유를 이용한 1.93㎛ 모드잠금 펨토초 전광섬유 MOPA 레이저)

  • Jung, Minwan;Koo, Joonhoi;Lee, Ju Han
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.6
    • /
    • pp.340-345
    • /
    • 2014
  • We experimentally demonstrate the use of a gold-deposited side-polished fiber as a $2-{\mu}m$-band polarizing device to produce mode-locked pulses from a thulium/holmium-codoped fiber ring cavity. The mode-locking effect was induced by nonlinear transmission caused by the gold-deposited side-polished fiber, due to nonlinear polarization rotation of the oscillated beam within the fiberized cavity. It is also shown that ~558-fs pulses with a peak power of ~6.7 kW could readily be produced at a wavelength of 1935 nm through subsequent thulium/holmium-codoped fiber amplification, due to the higher-order soliton compression effect.

Femtosecond Mid-IR Cr:ZnS Laser with Transmitting Graphene-ZnSe Saturable Absorber

  • Won Bae Cho;Ji Eun Bae;Seong Cheol Lee;Nosoung Myoung;Fabian Rotermund
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.738-744
    • /
    • 2023
  • Graphene-based saturable absorbers (SAs) are widely used as laser mode-lockers at various laser oscillators. In particular, transmission-type graphene-SAs with ultrabroad spectral coverage are typically manufactured on transparent substrates with low nonlinearity to minimize the effects on the oscillators. Here, we developed two types of transmitting graphene SAs based on CaF2 and ZnSe. Using the graphene-SA based on CaF2, a passively mode-locked mid-infrared Cr:ZnS laser delivers relatively long 540 fs pulses with a maximum output power of up to 760 mW. In the negative net cavity dispersion regime, the pulse width was not reduced further by inhomogeneous group delay dispersion (GDD) compensation. In the same laser cavity, we replaced only the graphene-SA based on CaF2 with the SA based on ZnSe. Due to the additional self-phase modulation effect induced by the ZnSe substrate with high nonlinearity, the stably mode-locked Cr:ZnS laser produced Fourier transform-limited ~130 fs near 2,340 nm. In the stable single-pulse operation regime, average output powers up to 635 mW at 234 MHz repetition rates were achieved. To our knowledge, this is the first attempt to achieve shorter pulse widths from a polycrystalline Cr:ZnS laser by utilizing the graphene deposited on the substrate with high nonlinearity.

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

5.8 GHz PLL using High-Speed Ring Oscillator for WLAN (WLAN을 위한 고속 링 발진기를 이용한 5.8 GHz PLL)

  • Kim, Kyung-Mo;Choi, Jae-Hyung;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.37-44
    • /
    • 2008
  • This paper presents a 5.8 GHz PLL using high-speed ring oscillator for WLAN. The proposed ring oscillator has been designed using the negative skewed delay scheme and for differential mode operation. Therefore, the oscillator is insensitive to power-supply-injected noise, and it has the merit of low 1/f noise because tail current sources are not used. The output frequency ranges from 5.13 to 7.04 GHz with the control voltage varing from 0 to 1.8 V. The proposed PLL circuits have been designed, simulated, and proved using 0.18 um 1.8 V TSMC CMOS library. At the operation frequency of 5.8 GHz, the locking time is 2.5 us and the simulated power consumption is 59.9 mW.

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.