• 제목/요약/키워드: Mode-I Energy Release Rate

검색결과 47건 처리시간 0.025초

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K;Mishra, Pradeep K;Panda, Subrata K
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.723-735
    • /
    • 2020
  • This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

$J_k$ 적분을 이용한 이방성 복합적층판에 대한 혼합 모우드 파괴문제의 해석 (Analysis of mixed mode crack problems for anisotropic composite laminates using the $J_k$ integral)

  • 주석재;홍창선
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.479-489
    • /
    • 1989
  • 본 논문에서는 J$_{1}$,J$_{2}$ 적분과 K$_{I}$,K$_{II}$ 사이의 완전한 관계를 좁은 직사각형 경로를 택하여 간판하게 유도하였다. 그리고 유한요소의 해로 J$_{2}$적분을 효율적으로 계산하는 방법을 제시하였다.이미 해가 존재하는 문제 를 본 방법으로 다루어 그 결과를 비교하였고 일방향(unidirectional) 적층판 cantil- ever 평판 내의 single edge crack에 대한 해를 제시하였다.

탄성일인자방법을 적용한 단일방향 탄소섬유/에폭시 DCB 시편의 파괴인성 결정 ($G_IC$ determination of unidirectional graphite /epoxy DCB composites from the elastic work factor approach)

  • 이경엽;이중희
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.540-544
    • /
    • 1998
  • Compliance calibration method is frequently used to determine $G_IC$ from the DCB composite specimen. However, the method requires at least 4 to 5 fracture test (loading-unloading) records. In this study, $G_IC$ of unidirectional graphite/epoxy DCB composites was determined from the elastic work factor approach which uses a single fracture test record. In order to inspect the validity of the elastic work factor approach, $G_IC$ determined from the elastic work factor approach was compared to that of determined from the compliance calibration method. It was shown that $G_IC$ determined from the elastic work factor approach was comparable to that determined from the compliance calibration method. That is, the elastic work factor approach can be used to determine $G_IC$ of unidirectional graphite/epoxy DCB specimen from a single fracture record.

p-Version 적층모델을 통한 팻취 보강된 강판의 선형탄성파괴역학 해석 (LEFM Analysis of Patch Repaired Steel Plates by p-Version Layer Model)

  • 한상현;신영식;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.487-492
    • /
    • 2007
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchical void element with the integrals of Legend polynomials is used to characterize the fracture behavior of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. The numerical approach is based on the v-version degenerate shell element including the theory of anisotropic laminated composites. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness of materials. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of hierarchical void element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem.

  • PDF

Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder

  • Kwon, Oh-Heon;Yun, Yu-Seong;Ryu, Yeong-Rok
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.166-173
    • /
    • 2014
  • In this study, a laminated composite material with dispersing aluminum oxide powder between the CFRP laminate plies, and also CFRP composites without aluminium oxide powder were fabricated for Mode I experiments using the DCB specimen and a tensile test. The behavior of the crack and the change of the interfacial fracture toughness were evaluated. Also in order to evaluate the damage mechanism for the crack extension, the AE sensor on the surface of the DCB test specimen was attached. AE amplitude was estimated for CFRP-alumina and CFRP composite. And the fracture toughness was evaluated by the stress intensity factor and energy release rate. The results showed that an unstable crack was propagated rapidly in CFRP composite specimen along with the interface, but crack propagation in CFRP-alumina specimen was relatively stable. From results, we show that aluminium oxide powder spreaded uniformly in the interface of the CFRP laminate carried out the role for preventing the sudden crack growth.

Non-linear analysis of dealamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.97-111
    • /
    • 2017
  • The present paper reports an analytical study of delamination fracture in the Mixed Mode Flexure (MMF) functionally graded beam with considering the material non-linearity. The mechanical behavior of MMF beam is modeled by using a non-linear stress-strain relation. It is assumed that the material is functionally graded along the beam height. Fracture behavior is analyzed by the J-integral approach. Non-linear analytical solution is derived of the J-integral for a delamination located arbitrary along the beam height. The J-integral solution derived is verified by analyzing the strain energy release rate with considering the non-linear material behavior. The effects of material gradient, crack location along the beam height and material non-linearity on the fracture are evaluated. It is found that the J-integral value decreases with increasing the upper crack arm thickness. Concerning the influence of material gradient on the non-linear fracture, the analysis reveals that the J-integral value decreases with increasing the ratio of modulus of elasticity in the lower and upper edge of the beam. It is found also that non-linear material behavior leads to increase of the J-integral value. The present study contributes for the understanding of fracture in functionally graded beams that exhibit material non-linearity.

p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정 (Stress Intensity Factor of Cracked Plates with Bonded Composite Patch by p-Convergence Based Laminated Plate Theory)

  • 우광성;한상현;양승호
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.649-656
    • /
    • 2008
  • 손상 또는 균열된 구조물의 내구성을 향상시키려는 과제는 연구자들과 엔지니어들에게 중요한 과제로 떠오르고 있다. 팻취로 보강되지 않은 균열판과 팻취보강된 균열판의 응력확대계수 및 응력등고선의 산정 및 비교에 의한 균열선단에서의 파괴거동의 특성을 적분형 르장드르 다항식에 기초를 둔 계층적 무강성요소를 사용하여 표현하고자 한다. 이 연구에서는 등가단층이론이 채택되므로, 제안된 무강성요소는 불연속 균열부를 강성이 0인 연속체로 간주된다. 그러므로 균열을 모델링하는 무강성요소의 변장비는 매우 커질 수밖에 없다. 제안된 요소의 강건성을 보이기 위해 형상비 변화에 따른 에너지방출률, 변위 및 응력값에 대한 유한요소해의 민감도는 변장비를 2000까지 증가시켜 가면서 평가되었다. 한편, 강성도미분법과 변위외삽법이 인장모우드가 발생되는 문제의 응력확대계수를 예측하는데 사용된다. 제안된 계층적 무강성요소는 팻취보강된 균열문제를 해석할 수 있는 대안중의 하나라 평가된다.