DOI QR코드

DOI QR Code

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K (Department of Mechanical Engineering, Centre for Advanced Post Graduate Studies) ;
  • Mishra, Pradeep K (Department of Mechanical Engineering, Centre for Advanced Post Graduate Studies) ;
  • Panda, Subrata K (Department of Mechanical Engineering, NIT Rourkela)
  • 투고 : 2019.12.03
  • 심사 : 2020.01.19
  • 발행 : 2020.06.25

초록

This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

키워드

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A. A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. http://www.technopress.net/index.ph-p/cac/article/view/182. https://doi.org/10.12989/cac.2019.24.6.489
  2. Adams, R.D. and Peppiatt, N.A. (1974), "Stress analysis of adhesive-bonded lap joints", J. Strain Analysis, 9(3), 185-196. https://doi.org/10.1243/03093247V093185.
  3. Addou, F. Y., Meradjah, M., Bousahla, A. A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S. R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  4. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  5. Batou, B., Nebab, M., Bennai, R., Atmane, H. A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699.https://doi.org/10.12989/scs.2019.33.5.699.
  6. Bedia, W. A., Houari, M. S. A., Bessaim, A., Bousahla, A. A., Tounsi, A., Saeed, T. and Alhodaly, M. S. (2019), "A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams", J. Nano Research, 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  7. Belbachir, N., Draich, K., Bousahla, A. A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  8. Benchiha, A. and Madani, K. (2015), "Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint", Struct. Eng. Mech., 53(5), 1017-1030. https://doi.org/10.12989/sem.2015.53.5.1017.
  9. Berghouti, H., Adda Bedia, E. A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  10. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A. A., Bourada, M., Tounsi, A. and Al-Osta, M. A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  11. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  12. Bourada, F., Bousahla, A. A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  13. Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla, A. A., Tounsi, A., ... and Mahmoud, S. R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191.
  14. Budhe, S., Banea, M.D., De Barros, S. and Da Silva, L.F.M. (2017), "An updated review of adhesively bonded joints in composite materials", J. Adhesion Ahesives, 72, 30-42. https://doi.org/10.1016/j.ijadhadh.2016.10.010.
  15. Chaabane, L. A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F. Z., Tounsi, A., ... and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  16. Cheuk, P.T. and Tong, L. (2002), "Failure of adhesive bonded composite lap shear joints with embedded precrack", Compos. Sci. Technol., 62(7-8), 1079-1095. https://doi.org/10.1016/S0266-3538(02)00054-4.
  17. Daniel, I. M., Ishai, O., Daniel, I. M. and Daniel, I. (1994), Engineering Mechanics of Composite Materials, Oxford University \Press, New York, USA.
  18. Delale, F., Erdogan, F. and Aydinoglu, M.N. (1981), "Stresses in adhesively bonded joints: a closed-form solution", J. Compos. Mater., 15(3), 249-271. https://doi.org/10.1177/002199838101500305.
  19. Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  20. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  21. Elhannani, M., Madani, K., Mokhtari, M., Touzain, S., Feaugas, X. and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint", Struct. Eng. Mech., 59(2), 313-326. https://doi.org/10.12989/sem.2-016.59.2.313.
  22. Gulasik, H. and Coker, D. (2014), "Delamination-debond behaviour of composite T-joints in wind turbine blades", J. Physics Conference Series, IOP Publishing, TORQUE 2014, Denmark. https://iopscience.iop.org/issue/1742-6596/524/1.
  23. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandwich Struct. Mater., https://doi.org/10.1177/109-9636219845841.
  24. Hussain, M., Naeem, M. N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431. https://doi.org/10.12989/anr.2019.7.6.431.
  25. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", Appl. Mech, 24, 361-364. https://doi.org/10.1115/1.4011547
  26. Jayatilake, I. N., Karunasena, W. and Lokuge, W. (2016), "Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations", Adv. Aircraft Spacecraft Sci., 3(1), 15-28. https://doi.org/10.12989/aas.2016.3.1.015.
  27. Jones, R.M. (2014), Mechanics of Composite Materials, CRC press, Florida, USA.
  28. Kapidzic, Z., Nilsson, L. and Ansell, H. (2014), "Finite element modeling of mechanically fastened composite-aluminum joints in aircraft structures", Compos. Struct., 109, 198-210. https://doi.org/10.1016/j.compstruct.2013.10.056.
  29. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  30. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.20-19.70.1.055.
  31. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "On exact wave propagation analysis of triclinic material using three-dimensional Bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  32. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazilian Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
  33. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019e), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  34. Khiloun, M., Bousahla, A. A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S. R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1.
  35. Khiloun, M., Bousahla, A. A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S. R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1.
  36. Li, H.C.H., Dharmawan, F., Herszberg, I. and John, S. (2006), "Fracture behaviour of composite maritime T-joints", Compos. Struct., 75(1-4), 339-350. https://doi.org/10.1016/j.compstruct.2006.04.052.
  37. Li, W., Blunt, L. and Stout, K.J. (1997), "Analysis and design of adhesive-bonded tee joints", J. Adhesion Ahesives, 17(4), 303-311. https://doi.org/10.1016/S0143-7496(97)00012-2.
  38. Madenci, E. and Guven, I. (2015), The Finite Element Method and Applications in Engineering Using ANSYS(R), Springer, Germany.
  39. Mahieddine, A., Ouali, M. and Mazouz, A. (2015), "Modeling and simulation of partially delaminated composite beams", Steel Compos. Struct., 18(5), 1119-1127. https://doi.org/10.12989/scs.2015.18.5.1119.
  40. Mahmoud, S. R. and Tounsi, A. (2019), "On the stability of isotropic and composite thick plates", Steel Compos. Struct., 33(4), 551-568. https://doi.org/10.12989/scs.2019.33.4.551.
  41. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E. A. and Mahmoud, S. R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  42. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A. A., ... and Mahmoud, S. R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  43. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E. A. and Mahmoud, S. R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandwich Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  44. Mishra, P.K., Pradhan, A.K. and Pandit, M.K. (2016), "Delamination propagation analyses of spar wing-skin joints made with curved laminated FRP composite panels", J. Adhesion Sci. Technol., 30(7), 708-728. https://doi.org/10.1080/01694243.2015.1121851.
  45. Mokhtari, M., Shahravi, M. and Zabihpoor, M. (2017), "Development of dynamic behavior of the novel composite T-Joints: numerical and experimental", Adv. Aircr. Space. Sci, 5, 385-400. https://doi.org/10.12989/aas.2018.5.3.385.
  46. Nimje, S.V. and Panigrahi, S.K. (2015), "Interfacial failure analysis of functionally graded adhesively bonded double supported tee joint of laminated FRP composite plates", J. Adhesion Ahesives, 58, 70-79. https://doi.org/10.1016/j.ijadhadh.2015.01.002.
  47. Panigrahi, S.K. and Pradhan, B. (2007), "Three dimensional failure analysis and damage propagation behavior of adhesively bonded single lap joints in laminated FRP composites", J. Reinforced Plastics Compos., 26(2), 183-201. https://doi.org/10.1177/0731684407070026.
  48. Peric, M., Tonkovic, Z., Rodic, A., Surjak, M., Garasic, I., Boras, I. and Svaic, S. (2014), "Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld", Mater. Design, 53, 1052-1063. https://doi.org/10.1016/j.matdes.2013.08.011.
  49. Prashob, P. S., Shashikala, A. P. and Somasundaran, T. P. (2017a), "Behaviour of carbon fiber reinforced polymer strengthened tubular joints", Steel Compos. Struct., 24(4), 383-390. https://doi.org/10.12989/scs.2017.24.4.383.
  50. Prashob, P. S., Shashikala, A. P. and Somasundaran, T. P. (2017b), "Review of existing techniques and fibre reinforced polymers used for strengthening tubular joints", Struct. Monitor. Maintenance, 4(3),255-268. https://doi.org/10.12989/smm.2017.4.3.255.
  51. Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fracture Mech., 9(4), 931-938. https://doi.org/10.1016/0013-7944(77)90013-3.
  52. Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663.https://doi.org/10.12989/scs.2019.33.5.663.
  53. Semmah, A., Heireche, H., Bousahla, A. A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non-local FSDT", Adv. Nano Res., 7(2), 89. https://doi.org/10.12989/anr.2019.7.2.089.
  54. Tsai, S. (2018), Introduction to composite materials, Routledge.
  55. Vosoughi, A. R. (2015), "A developed hybrid method for crack identification of beams", Smart Struct. Syst., 16(3), 401-414. https://doi.org/10.12989/sss.2015.16.3.401.
  56. Xie, D., Waas, A.M., Shahwan, K.W., Schroeder, J.A. and Boeman, R.G. (2004), "Computation of energy release rates for kinking cracks based on virtual crack closure technique", Comput. Modell. Eng. Sci., 6(6), 515-524. https://pdfs.semanticscholar.org/2792/8c5f43f3814c404d56f64034b4f15ad644cc.
  57. Zaoui, F. Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  58. Zarga, D., Tounsi, A., Bousahla, A. A., Bourada, F. and Mahmoud, S. R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.