• Title/Summary/Keyword: Mode vectors

Search Result 138, Processing Time 0.022 seconds

CCQC modal combination rule using load-dependent Ritz vectors

  • Xiangxiu Li;Huating Chen
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Response spectrum method is still an effective approach for the design of buildings with supplemental dampers. In practice, complex complete quadratic combination (CCQC) rule is always used in the response spectrum method to consider the effect of non-classical damping. The conventional CCQC rule is based on exact complex mode vectors. Sometimes the calculated complex mode vectors may be not excited by the external loading and errors in the structural responses always arise due to the mode truncation. Load-dependent Ritz (LDR) vectors are associated with the external loading and LDR vectors not excited can be automatically excluded. Also, contributions of higher modes are implicitly contained in the LDR vectors in terms of static responses. To improve the calculation efficiency and accuracy, LDR vectors are introduced in the CCQC rule in the present study. Firstly, the generation procedure of LDR vectors suitable for non-classical damping system is presented. Compared to the conventional LDR vectors, the LDR vectors herein are complex-valued and named as complex LDR (CLDR) vectors. Based on the CLDR vectors, the CCQC rule is then rederived and an improved response spectrum method is developed. Finally, the effectiveness of the proposed method in this paper is verified through three typical non-classical damping buildings. Numerical results show that the CLDR vector is superior to the complex mode with the same number in the calculation. Since the generation of CLDR vectors requires less computational cost and storage space, the method proposed in this paper offers an attractive alternative, especially for structures with a large number of degrees of freedom.

A Mode Sorting Method Using the MAC of a Rotor-bearing System (MAC을 이용한 회전축계 시스템의 모드정렬 방법)

  • Lim, Jonghyuk;Kim, Minsung;Lee, Kyuho;Park, Chuljun;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.329-336
    • /
    • 2015
  • This paper presents a sorting method of mode vectors and natural frequencies about a rotor-journal bearing system. The rotor is solved by the finite element method, the bearing stiffness and damping coefficient are solved by the finite difference method. At any rotation speed section through the eigenvalue analysis of the system, mode vectors and natural frequencies not sorted are confirmed via the Campbell diagram and the MAC(modal assurance criterion). To sort mode vectors and natural frequencies of the section, a mode sorting method is presented through a method of rearranging the MAC of the mode vectors. Finally, the mode vectors and the natural frequencies are sorted by using the presented method, these are verified through the MAC.

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

Multi-strategy structural damage detection based on included angle of vectors and sparse regularization

  • Liu, Huanlin;Yu, Ling;Luo, Ziwei;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • Recently, many structural damage detection (SDD) methods have been proposed to monitor the safety of structures. As an important modal parameter, mode shape has been widely used in SDD, and the difference of vectors was adopted based on sensitivity analysis and mode shapes in the existing studies. However, amplitudes of mode shapes in different measured points are relative values. Therefore, the difference of mode shapes will be influenced by their amplitudes, and the SDD results may be inaccurate. Focus on this deficiency, a multi-strategy SDD method is proposed based on the included angle of vectors and sparse regularization in this study. Firstly, inspired by modal assurance criterion (MAC), a relationship between mode shapes and changes in damage coefficients is established based on the included angle of vectors. Then, frequencies are introduced for multi-strategy SDD by a weighted coefficient. Meanwhile, sparse regularization is applied to improve the ill-posedness of the SDD problem. As a result, a novel convex optimization problem is proposed for effective SDD. To evaluate the effectiveness of the proposed method, numerical simulations in a planar truss and experimental studies in a six-story aluminum alloy frame in laboratory are conducted. The identified results indicate that the proposed method can effectively reduce the influence of noises, and it has good ability in locating structural damages and quantifying damage degrees.

Derivation of the Foschini and Shepp's Joint-Characteristic Function for the First-and Second-Order Polarization-Mode-Dispersion Vectors Using the Fokker-Planck Method

  • Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.240-243
    • /
    • 2008
  • Using the well-known Fokker-Planck method, this paper presents a standard way to find the joint-characteristic function for the first- and second-order polarization-mode-dispersion vectors originally derived by Foschini and Shepp. Compared with the Foschini and Shepp's approach, the Fokker-Planck approach gives a more accurate and straightforward way to find the joint-characteristic function.

Conducted EMI reduction of Induction Motor Drive System by PWM switching technique (PWM 스위칭 기법에 의한 유도전동기 구동시스템의 전도노이즈 저감)

  • Chun, Kwang-Su;Lee, Won-Cheol;Kim, Lee-Hun;Kim, Soo-Seok;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.540-545
    • /
    • 2004
  • Conventional SVPWM method has null switching vectors. Null switching vectors cause common-mode voltage making high in induction motor drive system. New SVPWM method without using null switching vectors are proposed in the paper. So, new SVPWM method reduces the common mode voltage for induction motor drive system. It is realized by changing software without adding hardware to induction motor drive system. Simulation results show that common-mode voltage adapting proposed method are reduced regarding conventional method.

  • PDF

Performance Comparison of Common-Mode Voltage Reduction PWM Methods in Terms of Modulation Index (변조지수에 따른 공통모드 전압 저감 PWM 기법 성능 비교)

  • Heo, Geon;Park, Yongsoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2021
  • This study introduces a new pulse width modulation (PWM) method to reduce common-mode voltages (CMVs) and then compares its performance with other reduced CMV-PWM (RCMV-PWM) methods. CMVs should be reduced to ensure the electromagnetic compatibility and safety of grid-connected inverters. RCMV-PWM methods attempt to synthesize voltage references without zero vectors, which cause high CMV peaks. In these methods, the peak-to-peak magnitude of CMVs can be reduced by one-third of the conventional space-vector PWM. The introduced method splits every reference vector into two vectors to avoid the use of zero vectors. The performances of the RCMV-PWM methods are analyzed in accordance with the modulation index through simulation and experiment.

Performance Comparison of Common-Mode Voltage Reduction Methods in terms of Modulation Index (변조지수에 따른 공통모드 전압 저감 기법 성능 비교)

  • Heo, Geon;Park, Yongsoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.106-108
    • /
    • 2020
  • This paper introduces a new pulse-width modulation (PWM) method to reduce common-mode voltages (CMVs) and compare its performance with other reduced CMV-PWM (RCMV-PWM) methods. To avoid the use of zero-vectors which cause high CMV peaks, the introduced method splits every reference vector into two vectors such that the peak-to-peak magnitude of CMV is reduced by one-third of conventional space-vector PWM (SVPWM). The performance of RCMV-PWMs altered by the modulation index are analyzed with simulation results.

  • PDF

Investigation of Efficiency of Starting Iteration Vectors for Calculating Natural Modes (고유모드 계산을 위한 초기 반복벡터의 효율성 연구)

  • Kim, Byoung-Wan;Kyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Kyu;Lee, In-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.112-117
    • /
    • 2005
  • Two modified versions of subspace iteration method using accelerated starting vectors are proposed to efficiently calculate free vibration modes of structures. Proposed methods employ accelerated Lanczos vectors as starting iteration vectors in order to accelerate the convergence of the subspace iteration method. Proposed methods are divided into two forms according to the number of starting vectors. The first method composes 2p starting vectors when the number of required modes is p and the second method uses 1.5p starting vectors. To investigate the efficiency of proposed methods, two numerical examples are presented.

Reducing Common-Mode Voltage of Three-Phase VSIs using the Predictive Current Control Method based on Reference Voltage

  • Mun, Sung-ki;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.712-720
    • /
    • 2015
  • A model predictive current control (MPCC) method that does not employ a cost function is proposed. The MPCC method can decrease common-mode voltages in loads fed by three-phase voltage-source inverters. Only non-zero-voltage vectors are considered as finite control elements to regulate load currents and decrease common-mode voltages. Furthermore, the three-phase future reference voltage vector is calculated on the basis of an inverse dynamics model, and the location of the one-step future voltage vector is determined at every sampling period. Given this location, a non-zero optimal future voltage vector is directly determined without repeatedly calculating the cost values obtained by each voltage vector through a cost function. Without utilizing the zero-voltage vectors, the proposed MPCC method can restrict the common-mode voltage within ± Vdc/6, whereas the common-mode voltages of the conventional MPCC method vary within ± Vdc/2. The performance of the proposed method with the reduced common-mode voltage and no cost function is evaluated in terms of the total harmonic distortions and current errors of the load currents. Simulation and experimental results are presented to verify the effectiveness of the proposed method operated without a cost function, which can reduce the common-mode voltage.