• 제목/요약/키워드: Mode instability

검색결과 396건 처리시간 0.028초

고체추진 로켓의 선형 안정성 요소에 대한 연구 (Linear Stability Analysis for Combustion Instability in Solid Propellant Rocket)

  • 김학철;김준성;문희장;성홍계;이훈기;엄원석;이도형
    • 한국추진공학회지
    • /
    • 제17권5호
    • /
    • pp.27-36
    • /
    • 2013
  • 본 연구에서는 고체로켓 모터의 연소 불안정성을 예측하고 분석 할 수 있는 해석도구의 개발을 위해 음향에너지의 분석과 선형 안정성 해석을 수행하였다. 음향 해석의 경우 상용 프로그램인 COMSOL을 이용하여 단면적이 일정한 실린더 형상의 연소실 음향 해석 및 모드 해를 도출하였다. Culick에 의해 정립된 고체추진 로켓의 선형 안정성 해석에 기초하여 연소 불안정성을 진단하였으며 압력결합, 노즐감쇠, 입자감쇠의 안정성 요소(stability alpha) 외에 유동방향변환(flow turning) 요소와 점성감쇠(viscous loss) 요소를 추가하여 연료 표면 근처의 유동 및 점성효과를 포함하는 연소 불안정의 경향을 파악하였다. 또한 입자의 크기에 따른 주파수 영역별 연소 불안정 감쇠 특성을 파악하였다.

3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향 (Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System)

  • 홍수민;김대식
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석 (Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF

연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향 (Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics)

  • 김대현;이종호;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF

연소장치에서 발생하는 고주파 연소 불안정 특성 (Characteristics of High-Frequency Combustion Instabilities Occurring in Combustion Devices)

  • 서성현
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.30-36
    • /
    • 2012
  • Dynamic characteristics of combustion occurring in various combustion devices have been extensively studied since most of high-performance combustion devices are susceptible to hazardous, unstable combustion that deteriorates combustor's lifetime. One of the most severe unstable combustion phenomena is high-frequency combustion instability in which heat release fluctuations from combustion are coupled to resonant modes of the combustor. Here in this study, characteristics of high-frequency combustion instabilities observed in three different combustion devices have been presented. Lean-premixed combustion instability occurs mainly due to equivalence ratio fluctuations which induce large heat release oscillations at lean conditions. Liquid-fueled combustion also shows high-frequency instability from energy coupling between pressure and heat release oscillations.

자기성 유체 계면의 선형안정성에 관한 연구 (A linear analysis of interfacial instabilities of ferrofluids)

  • 박창호;주상우;이상천
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.899-904
    • /
    • 1998
  • Surface motion of a magnetic fluid is studied by a linear stability analysis. When a thin horizontal magnetic-fluid layer is placed on a nonmagnetic substrate, with a vertical magnetic field applied, the surface of the ferrofluid layer can be severely corrugated, due to the normal-field instability. Based on conservation laws, it is shown that the normal-field instability of thin ferrofluid layers is a long-wave instability and that it is analogous to the interfacial mode of the thermocapillary instability in a thin horizontal layer heated from below.

온도 분포가 원심 불안정성에 미치는 영향에 대한 전산해석적 연구 (Numerical Study of the Thermal Effects on the Centrifugal Instability)

  • 황종연;;이승수;윤동혁;양경수
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.578-586
    • /
    • 2006
  • Numerical simulations are carried out to investigate the thermal effects of the gravitational potential on the centrifugal instability of a Taylor-Couette flow, and to further study the detailed flow fields and flow bifurcations to spiral vortices. The effects of centrifugal potential on the centrifugal instability are also investigated in the current study. Spiral vortices have various types of mode depending on Grashof number and Reynolds number. The correlation of Richardson number with the spiral angle of the spiral vortices shows that the structure of the spiral vortices strongly depends on the Richardson number. The heat transfer rate of the inner cylinder increases with increasing Grashof number. It is also confirmed that the torque required to rotate the inner cylinder increases as Grashof number increases.

희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구 (Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor)

  • 이종호;김대현;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.425-432
    • /
    • 2004
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence(OH$\^$*/) image and its Abel inverted image to investigate the flame structure at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure and NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ∼341.8㎐, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between OH$\^$*/ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구 (Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor)

  • 문건필;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.356-361
    • /
    • 2003
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence ($OH{\ast}$) image and its Abel inversion image at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure. Also NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ${\sim}341.8$ Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between $OH{\ast}$ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

  • PDF

AN EVALUATION OF THE APERIODIC AND FLUCTUATING INSTABILITIES FOR THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN INTEGRAL REACTOR

  • Kang Han-Ok;Lee Yong-Ho;Yoon Ju-Hyeon
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.343-352
    • /
    • 2006
  • Convenient analytical tools for evaluation of the aperiodic and the fluctuating instabilities of the passive residual heat removal system (PRHRS) of an integral reactor are developed and results are discussed from the viewpoint of the system design. First, a static model for the aperiodic instability using the system hydraulic loss relation and the downcomer feedwater heating equations is developed. The calculated hydraulic relation between the pressure drop and the feedwater flow rate shows that several static states can exist with various numbers of water-mode feedwater module pipes. It is shown that the most probable state can exist by basic physical reasoning, that there is no flow rate through the steam-mode feedwater module pipes. Second, a dynamic model for the fluctuating instability due to steam generation retardation in the steam generator and the dynamic interaction of two compressible volumes, that is, the steam volume of the main steam pipe lines and the gas volume of the compensating tank is formulated and the D-decomposition method is applied after linearization of the governing equations. The results show that the PRHRS becomes stabilized with a smaller volume compensating tank, a larger volume steam space and higher hydraulic resistance of the path $a_{ct}$. Increasing the operating steam pressure has a stabilizing effect. The analytical model and the results obtained from this study will be utilized for PRHRS performance improvement.