• 제목/요약/키워드: Mode instability

검색결과 396건 처리시간 0.021초

Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth (선편광된 10 GHz 선폭의 1 kW급 20/400-㎛ 이터븀 첨가 광섬유 레이저)

  • Jung, Yeji;Jung, Minwan;Lee, Kangin;Kim, Taewoo;Kim, Jae-Ihn;Lee, Yongsoo;Cho, Joonyong
    • Korean Journal of Optics and Photonics
    • /
    • 제32권3호
    • /
    • pp.120-125
    • /
    • 2021
  • We have developed a linearly polarized high-power Yb-doped fiber laser in the master oscillator power amplifier (MOPA) scheme for efficient spectral beam combining. We modulated the phase of the seed laser by pseudo-random binary sequence (PRBS), with the bit length optimized to suppress stimulated Brillouin scattering (SBS), and subsequently amplified seed power in a 3-stage amplifier system. We have constructed by coiling the polarization-maintaining (PM) Yb-doped fiber, with core and cladding diameters of 20 ㎛ and 400 ㎛ respectively, to a diameter of 9-12 cm for suppression of the mode instability (MI). Finally, we obtained an output power of 1.004 kW with a slope efficiency of 83.7% in the main amplification stage. The beam quality factor M2 and the polarization extinction ratio (PER) were measured to be 1.12 and 21.5 dB respectively. Furthermore, the peak-intensity difference between the Rayleigh signal and SBS signal was observed to be 2.36 dB in the backward spectra, indicating that SBS is successfully suppressed. In addition, it can be expected that the MI does not occur because not only there is no decrease in slope efficiency, but also the beam quality for each amplified output is maintained.

Emissions and Combustion Dynamics with Fuel Injection Position for Low-swirl Nozzles of Gas Turbine Combustor (복합발전 가스터빈 연소기용 저선회 노즐의 연료 분사 위치에 따른 배기배출 및 연소진동 특성)

  • Jeongjae, Hwang;Won June, Lee;Min Kuk, Kim;Han Seok, Kim
    • Journal of the Korean Institute of Gas
    • /
    • 제26권6호
    • /
    • pp.37-44
    • /
    • 2022
  • In this study, two low-swirl nozzles with the same SN (Swirl Number) but different mass ratio (m) of the core part and the swirler part were designed to perform an atmospheric pressure combustion test. For each nozzle, a combustion test was conducted according to the adiabatic flame temperature, and the flame structure, emissions, and combustion instability mode were identified. Although the flame structure was significantly different, the CO emission was similar, and the NOx emission was also more related to combustion dynamics than the flame structure. Combustion dynamics and NOx emission were identified while adjusting the convection delay time by changing the position of the fuel injection nozzle. It was confirmed that when the convection delay time is in the region of (3+4n)/4T±1/4T (n=0,1,2,...), the combustion instability is strong, and in the opposite case, the combustion instability is very weak.

Stabilization of Abnormal Combustion of Dry Low NOx Gas Turbine Combustor for Power Generation (발전용 저 NOx 가스터빈의 연소 불안정 안정화에 관한 연구)

  • 정재모;안달홍;박정규
    • Journal of Energy Engineering
    • /
    • 제13권2호
    • /
    • pp.144-151
    • /
    • 2004
  • Stabilization and reduction of combustion noise and NOx emission from dry low NOx combustor of GE MS7001F gas turbine were achieved. Dry low NOx gas turbines that adopt the lean premixed combustion technology frequently generate the flame instability and high NOx emissions if not adequately tuned. Dynamic pressure oscillation during the combustion mode transfer increased as ambient temperature decreased with frequency of 80㎐ and magnitude of 4-9 psi. Effects of both combustor tuning for uniform fuel flow with burner nozzles and fuel pre-filling into transfer fuel valves on stabilisation of the dry low NOx combustor were very significant. Dynamic pressure oscillation during the combustion mode change was decreased up to 2.5 psi. Also, NOx emission from GE7F DLN-1 combustor can be maintained as low as 35-43ppm (15% O$_2$) in base load operation of 150 MW.

Analytical Investigation of the Influence of Rotor Flap Dynamics on Helicopter Flight Control System Feedback Gain Limit (헬리콥터 비행 제어시스템의 피드백 제어 이득 한계에 대한 로터 플랩 동역학의 영향성 분석)

  • Yang, Chang Deok;Lee, Seung Deok;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제48권3호
    • /
    • pp.217-224
    • /
    • 2020
  • The use of a high gain flight control system to achieve high bandwidth performance increase the instability of a helicopter. To investigate these phenomena numerically, high fidelity EC155B1 helicopter model and simplified flight control system that include actuator, digital processor and noise rejection filter was developed. A study conducts an analytical investigation of roll axis stability of the helicopter model as feedback gain increases. And this study analyzes roll-rate and roll-attitude feedback gains limited by rotor flap mode. The results indicate that the phase delays caused by the filter can severely limit the usable values of the roll-rate and roll-attitude feedback gains.

A Study on the Relationship between Father's Verbal Control Modes, Children's Self-efficacy, Social Competence, and Interactive Peer Play (아버지 언어통제유형과 유아의 자아효능감, 사회적 유능성 및 상호작용적 또래놀이의 관계)

  • Kwon, Heekyoung
    • Korean Journal of Childcare and Education
    • /
    • 제9권5호
    • /
    • pp.321-334
    • /
    • 2013
  • The purpose of this study was to examine the relationship of father's verbal control modes, children's self efficacy, social competence and interactive peer play. The subjects were pairs of 195 three, four and five year-old-children and their fathers. Data were analyzed with mean, standard deviation, and bivariate correlation. Results indicated that father's verbal control modes were significantly correlated with children's self efficacy, social competence and interactive peer play. Father's person-oriented control verbal mode was positively related to children's self-recognition, self-emotion, social competence, leadership and interactive peer play while imperative control verbal mode was negatively related to children's instability, interrupted play behavior, and disturbed play behavior.

Analysis of the mechanical properties and failure modes of rock masses with nonpersistent joint networks

  • Wu, Yongning;Zhao, Yang;Tang, Peng;Wang, Wenhai;Jiang, Lishuai
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.281-291
    • /
    • 2022
  • Complex rock masses include various joint planes, bedding planes and other weak structural planes. The existence of these structural planes affects the mechanical properties, deformation rules and failure modes of jointed rock masses. To study the influence of the parameters of a nonpersistent joint network on the mechanical properties and failure modes of jointed rock masses, synthetic rock mass (SRM) technology based on discrete elements is introduced. The results show that as the size of the joints in the rock mass increases, the compressive strength and the discreteness of the rock mass first increase and then decrease. Among them, the joints that are characterized by "small but many" joints and "large and clustered" joints have the most significant impact on the strength of the rock mass. With the increase in joint density in the rock mass, the compressive strength of rock mass decreases monotonically, but the rate of decrease gradually decreases. With the increase in the joint dip angle in rock mass, the strength of the rock mass first decreases and then increases, forming a U-shaped change rule. In the analysis of the failure mode and deformation of a jointed rock mass, the type of plastic zone formed after rock mass failure is closely related to the macroscopic displacement deformation of the rock mass and the parameters of the joints, which generally shows that the location and density of the joints greatly affect the failure mode and displacement degree of the jointed rock mass. The instability mechanism of jointed surrounding rock is revealed.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Predicting the Morton Effect in a Steam Turbine with Sensitivity Vector (민감도 벡터를 이용한 스팀 터빈의 Morton Effect 발생 예측)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Junho Suh;Shinhun Kang;Seryong Kim
    • Tribology and Lubricants
    • /
    • 제40권2호
    • /
    • pp.39-46
    • /
    • 2024
  • The Morton effect (ME) is an instability phenomenon occurring in rotating machineries supported by fluid film bearings and is induced by the thermal deformation of the overhung mass, which is a part of the rotating shaft. Herein, we describe the ME during the high-speed balancing test of a 20 MW class steam turbine. Additionally, to predict the rotating speed at which the ME occurs, we apply the sensitivity vector theory for the steam turbine. During the operation of the steam turbine, we observe a continuous increase in vibration and hysteresis near the rated speed, which is typical of the ME. Increasing the temperature of the lubricating oil supplied to the bearings from 40 to 60℃ suppresses the occurrence of the ME. The rotordynamic analysis for the steam turbine suggests the existence of a mode in which the overhung mass undergoes significant deformation near the rated speed, and we presume that such a mode will increase the occurrence of the ME. The predicted rotating speed of ME occurrence, obtained through the sensitivity vector method, correlates with the test results. Moreover, increasing the temperature of the supplied lubricating oil mitigates the occurrence of ME by reducing the sensitivity between the temperature deviation vector and unbalance mass vector.

Characteristics of Buckling Load and Bifurcation in Accordance with Rise-span Ratio of Space Truss Considering Initial Imperfection (초기 불완전성을 고려한 공간 트러스의 분기좌굴과 라이즈-스팬 비에 따른 임계하중 특성)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • 제24권3호
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigated the characteristics of bifurcation and the instability due to the initial imperfection of the space truss, which is sensitive to the initial conditions, and the calculated buckling load by the analysis of Eigen-values and the determinant of tangential stiffness. A two-free nodes model, a star dome, and a three-ring dome model were selected as case studies in order to examine the unstable phenomenon due to the sensitivity to Eigen mode, and the influence of the rise-span ratio and the load parameter on the buckling load were analyzed. The sensitivity to the imperfection of the two-free nodes model changed the critical path after reaching the limit point through the bifurcation mode, and the buckling load level was reduced by the increase in the amount of imperfection. The two sensitive buckling patterns for the model can be explained by investigating the displaced position of the free node, and the asymmetric Eigen mode was a major influence on the unstable behavior due to the initial imperfection. The sensitive mode was similar to the in-extensional mechanism basis of the simplified model. Since the rise-span ratio was higher, the effect of local buckling is more prominent than the global buckling in the star dome, and bifurcation on the equilibrium path occurring as the value of the load parameter was higher. Additionally, the buckling load levels of the star dome and the three-ring model were about 50-70% and 80-90% of the limit point, respectively.

Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame (메탄/공기 예혼합화염의 동역학적 거동과 정상초음파의 교반)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제16권3호
    • /
    • pp.16-23
    • /
    • 2012
  • This study has been conducted to scrutinize agitation effects of an ultrasonic standing wave on the dynamic behavior of methane/air premixed flame. The propagating flame was caught by high-speed Schlieren images, through which local flame velocities of the moving front were analyzed in unprecedent detail. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without agitation at the stoichiometric ratio: the velocity enhancement diminishes as the equivalence ratio approaches upper flammability limit or lower flammability limit. Also, vertical locations of the wave-affected frontal distortions do not vary appreciably, unless the propagating-mode characteristics (pressure amplitude and driving frequency) of ultrasonic standing wave were not changed.