Browse > Article
http://dx.doi.org/10.3807/KJOP.2021.32.3.120

Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth  

Jung, Yeji (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
Jung, Minwan (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
Lee, Kangin (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
Kim, Taewoo (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
Kim, Jae-Ihn (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
Lee, Yongsoo (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
Cho, Joonyong (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
Publication Information
Korean Journal of Optics and Photonics / v.32, no.3, 2021 , pp. 120-125 More about this Journal
Abstract
We have developed a linearly polarized high-power Yb-doped fiber laser in the master oscillator power amplifier (MOPA) scheme for efficient spectral beam combining. We modulated the phase of the seed laser by pseudo-random binary sequence (PRBS), with the bit length optimized to suppress stimulated Brillouin scattering (SBS), and subsequently amplified seed power in a 3-stage amplifier system. We have constructed by coiling the polarization-maintaining (PM) Yb-doped fiber, with core and cladding diameters of 20 ㎛ and 400 ㎛ respectively, to a diameter of 9-12 cm for suppression of the mode instability (MI). Finally, we obtained an output power of 1.004 kW with a slope efficiency of 83.7% in the main amplification stage. The beam quality factor M2 and the polarization extinction ratio (PER) were measured to be 1.12 and 21.5 dB respectively. Furthermore, the peak-intensity difference between the Rayleigh signal and SBS signal was observed to be 2.36 dB in the backward spectra, indicating that SBS is successfully suppressed. In addition, it can be expected that the MI does not occur because not only there is no decrease in slope efficiency, but also the beam quality for each amplified output is maintained.
Keywords
Fiber laser; Fiber amplifier; Stimulated Brillouin scattering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, "3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing," Proc. SPIE 10083, 100830Y (2017).
2 F. Moller, R. G. Kramer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plotner, V. Bock, T. Schreiber, and A. Tunnermann, "Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW," in Advanced Solid State Lasers (Optical Society of America, 2018), paper AM2A.3.
3 J. Lee, K. H. Lee, H. Jeong, M. Park, J. H. Seung, and J. H. Lee, "2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated Brillouin scattering suppression incorporating a narrow-linewidth fiber-bragg-grating-stabilized laser diode seed source," Appl. Opt. 58, 6251-6256 (2019).   DOI
4 B. Shiner, "The impact of fiber laser technology on the world wide material processing market," in CLEO: Applications and Technology (Optical Society of America, 2013), paper AF2J.1.
5 T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005).   DOI
6 C. C. Cook and T. Y. Fan, "Spectral beam combining of Yb-doped fiber lasers in an external cavity," Advanced Solid State Lasers (Optical Society of America, 1999), paper PD5.
7 V. Khitrov, K. Farley, R. Leveille, J. Galipeau, I. Majid, S. Christensen, B. Samson, and K. Tankala, "kW level narrow linewidth Yb fiber amplifiers for beam combining," Proc. SPIE 7686, 76860A (2010).
8 Q. Fang, J. H. Li, W. Shi, Y. G. Qin, Y. Xu, X. J. Meng, R. A. Norwood, and N. Peyghambarian, "5 kW near-diffractionlimited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes," IEEE Photonics J. 9, 1506107 (2017).
9 D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010).   DOI
10 C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat. Photonics 7, 861-867 (2013).   DOI
11 M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 219-241 (2014).   DOI
12 S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007).   DOI
13 C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tunnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, "High average power spectral beam combining of four fiber amplifiers to 8.2 kW," Opt. Lett. 36, 3118-3120 (2011).   DOI
14 B. Ward, C. Robin, and I. Dajani, "Origin of thermal modal instabilities in large mode area fiber amplifiers," Opt. Express 20, 11407-11422 (2012).   DOI
15 E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, "Advances in fiber laser spectral beam combining for power scaling," Proc. SPIE 9730, 97300Y (2016).
16 Y. Liu, Z. Lv, Y. Dong, and Q. Li, "Research on stimulated Brillouin scattering suppression based on multifrequency phase modulation," Chin. Opt. Lett. 7, 29-31 (2009).   DOI
17 J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, "Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Light. Technol. 23, 3808-3814 (2005).   DOI
18 Y. Kwon, K. Park, D. Lee, H. Chang, S. Lee, L. A. Vazquez-Zuniga, Y. S. Lee, D. H. Kim, H. T. Kim, and Y. Jeong, "Current status and prospects of high-power fiber laser technology," Korean J. Opt. Photon. 27, 1-17 (2016).   DOI
19 T. J. Wagner, "Fiber laser beam combining and power scaling progress: air force research laboratory laser division," Proc. SPIE 8237, 823718 (2012).
20 J. D. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Light. Tech. 19, 1691-1697 (2001).   DOI
21 S. Jeong, K. Kim, S. Lee, S. Hwang, H. Yang, B. Moon, Y. M. Jhon, M. K. Park, and J. H. Lee, "Characteristics of stimulated Brillouin scattering suppression in high-power fiber lasers using temperature gradients," Korean J. Opt. Photon. 30, 167-173 (2019).   DOI
22 V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, "Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination," Proc. SPIE 10902, 109021G (2019).
23 R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Study of wavelength dependence of mode instability based on a semi-analytical model," IEEE J. Quantum Electron. 51, 1600106 (2015).
24 M. N. Zervas, "Transverse mode instability analysis in fiber amplifiers," Proc. SPIE 10083, 100830M (2017).
25 M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, "1.27 kW, 2.2 GHz pseudorandom binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap," Sci. Rep. 10, 629 (2020).   DOI
26 A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014).   DOI
27 E. C. Honea, M. P. Savage-Leuchs, S. M. Courtney, K. S. Brar, J. D. Henrie, and C. D. Dilley, "Fiber amplifier system for suppression on modal instabilities and method," US Patent US9214781B2 (2015).
28 S. Jeong, K. Kim, T. Kim, S. Lee, H. Yang, J. Lee, K. H. Lee, J. H. Lee, and M. Jo, "All-fiber 1.5-kW-class single-mode Ybdoped polarization-maintaining fiber laser with 10 GHz line-width," Korean J. Opt. Photon. 31, 223-230 (2020).   DOI
29 R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, "2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression," Laser Phys. Lett. 14, 085102 (2017).   DOI
30 I. Dajani, C. Zeringue, and T. Shay, "Investigation of nonlinear effects in multitone-driven narrow linewidth high-power amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 406-414 (2009).   DOI
31 I. Dajani, C. Zeringue, C. Lu, C. Vergien, L. Henry, and C. Robin, "Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power," Opt. Lett. 35, 3114-3116 (2010).   DOI
32 N. Platonov, R. Yagodkin, J. De La Cruz, A. Yusim, and V. Gapontsev, "Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format," Proc. SPIE 10512, 105120E (2018).