• Title/Summary/Keyword: Mode instability

Search Result 396, Processing Time 0.026 seconds

Stabilization and characterization of a 10 GHz harmonically mode-locked Er-doped fiber ring laser by suppression of relaxation oscillation (완화진동억압을 이용한 10 GHz 고조모드잠금된 고리형 어븀첨가 광섬유 레이저의 출력 안정화 및 특성 측정)

  • 장지웅;이유승;전영민;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • Using Mach-Zehnder type intensity modulator, we stabilized a 10 GHz harmonically mode-locked dispersion-compensated fiber ring laser using a feedback controlling system, and we measured its stability. The laser was stabilized for more than 16 hours by controlling the cavity length to suppress the relaxation oscillation frequency component which had caused the laser output instability. The ms timing jitter and ms amplitude noise were measured to be 260-524 fsec and 4~11.5%, respectively, and BER test measurement showed a value of 10$^{-13}$ .

A study of stability at the head of a breakwater with directional waves (방향성 파랑의 입사에 따른 이안제 제두부의 안정성에 관한 기초적 연구)

  • 김홍진;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.144-149
    • /
    • 2001
  • The failure at the head section of rubble-mound detached breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes occurring around the head of the rubble-mound detached breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached breakwater. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects. It is clarified that the structure monitored was safely designed for the design wave but the failure was occurred by the reason of breaker waves and scouring processes at the toe 3) It was observed that scouring at the toe developed in the region where steady stream due to vorticity was generated and the spatial variation of scour at the toe of the round head was predominated by incident wave direction.

  • PDF

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

The Optimum Design of Rotor Shape in Front Disk Brake System for Squeal Noise Reduction using the DOE (실험계획법을 이용한 전륜 디스크 브레이크 시스템의 로터형상 스퀼소음 저감 최적화)

  • Lee, Hyun-Young;Joe, Yong-Goo;Abu, Aminudin Bin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.236-240
    • /
    • 2005
  • This paper deals with friction-induced vibration of disc brake system under constact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, The comparison of experimental and analytical results shows a good agreement and the analysis indicates that mode coupling due to friction force and geometric instability is responsible fur disc brake squeal. And the Front brake system reduced the squeal noise using design of experiment method(DOE). This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

Effect of Rotary Inertia of Concentrated Masses on the Natural Vibration of Fluid Conveying Pipe

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.202-213
    • /
    • 1999
  • Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) Rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are $\pi$, 2$\pi$, and 3$\pi$ for the simply supported pipe and 2$\pi$, 8.99, and 12.57 for the clamped-clamped pipe.

  • PDF

Numerical Analysis on Screech Tone in a Supersonic Jet (숯계산에 의한 초음속 제트의 스크리티 톤 소음 해석)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with a modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures and large-scale instability waves.

Experimental Study on Edge Flame Instabilities in Solid Rocket Combustion (고체로켓연소에서 에지화염 불안정성에 대한 실험적 연구)

  • Hwang Dong-Jin;Park Jeong;Kim Jeong-Soo;Kim Sung-Cho;Kim Tae-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations are categorized into three: a growing-, a decaying-, and a harmonic-oscillation mode.

  • PDF

An Experimental Study on Mechanism of Combustion Frequencies in Model Combustor with V-gutter type Flameholder (V-gutter형 보염기를 장착한 모델 연소기 내의 연소 주파수 발생 메커니즘 연구)

  • Song, Jin-Kwan;Hwang, Jeong-Jae;Song, Jae-Cheon;Yoon, Young-Bin;Lee, Jong-Guen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.277-280
    • /
    • 2009
  • Mechanism of combustion frequencies occurring during combustion is experimentally investigated in model combustor with V-gutter flameholder. this combustor has a long duct shape with a cross section area of $40{\times}40\;mm$. The v-gutter type flameholder with 14mm width is mounted at the bottom of combustor. Kerosene and methane were used as fuel, and these fuel were injected transversely into air crossflow. It is found that combustion frequencies were considered as 1L longitudinal mode caused by combustor geometry and vortex shedding mode of flameholder. And fuel phase effect and nozzle effect were also observed in the low frequency range.

  • PDF

Characteristics of Roadside Cut-Slopes Failures along the 46th National Highway (남양주-춘천(국도 46 호선)간 도로절개면 붕괴 특성 고찰)

  • 구호본;정의진;박성욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.527-534
    • /
    • 2000
  • 136 cut slopes which extends from Namyangju to Chunchon city along the 46th national highway were investigated to analyze the influence factors affecting slope instability. Geologic and geotechnical conditions were examined and the detailed investigation were carried out for fifty five failed slopes. failure mode (wedge failure, planar failure, circular failure, sheet eroison and rock falls) are examined with respect to slope inclination, rock type, weathering grade and discontinuity patterns. It is suggested that the failure modes and their dimensions have relations to the morphology and geologic conditions of the slopes. Wedge failure has highest is the most frequent failure mode and falls, sheet erosions, planar failures and circular in descending order of failure percentage. Wedge failure is most dominant failure type over all lithology except quartzite formation. In slopes of well foliated and banded gneiss, failure ratio of wedge is up to 50% ca. Failure ratio(number of rock fall/number of total failure) of rock fall increases with increase fo slope inclinations and decrease of weathering grade. Dimension analyses of failed slopes shows wedge and circular failure has higher value of D/L and D/H than planar failure and sheet erosion.

  • PDF

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.