• Title/Summary/Keyword: Mode expansion method

Search Result 153, Processing Time 0.024 seconds

Study on the Analysis of Failure Cause and Determination of Life Test Mode of Capsule (축열조 캡슐 고장원인 분석과 수명시험 모드 결정에 관한 연구)

  • Kang, Bosik;Lee, Yongbum;Jung, Dongsoo;Lee, Chungsung
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the life of the capsule, which is a core part of the heat storage cooling system. This paper will develop a life test mode that can reproduce environment conditions through the analysis of capsule shrinkage and expansion characteristics. Methods: In order to determine the life test mode of the capsule, this paper analyzed the case of field failures and analyzed the deformation characteristics according to the pressure fluctuation of the capsule. The method to find out whether the field failure and deformation analysis results are consistent is the testing with the construction of the repetition pressure test equipment and the thermal cycle test to reproduce the freezing and thawing characteristics. Results: In this study, failure mode analysis and analysis of freezing and thawing characteristics regarding to the capsule positions were completed. Based on this test & analysis results, this paper have been able to determine the main parameters for determining the life test mode, the freezing and thawing time. Conclusion: Determining the lifetime mode of the capsule can be used to improve the life and performance of the thermal storage system.

Improvement of Input Current Waveform for Soft-Switching Boost DCM Converter with Unity Power Factor

  • Taniguchi K.;Watanabe T.;Morizane T.;Kimura N.;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.556-560
    • /
    • 2001
  • In this paper, a soft-switching discontinuous mode (DCM) power factor corrected (PFC) converter is analyzed by applying the double Fourier series expansion. It is found that the fundamental component and higher-order harmonics included in the input current waveform are obtained by the Fourier series expansion of the mean value of the inductor current. From the theoretical analysis, a new method removing the distortion of the input current waveform is proposed. In spite of an open loop system, the proposed method makes a great improvement of the total harmonic distortion even if the ratio of output voltage to input voltage is very low.

  • PDF

Natural Frequency of Two Rectangular Plates Coupled with Fluid (유체로 연성된 두 사각평판의 고유진동수)

  • Jeong, Kyeong-Hoon;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.908-913
    • /
    • 2002
  • An analytical study is presented on the hydroelastic vibration of two rectangular identical plates coupled with a bounded fluid by using the finite Fourier series expansion method. It is observed that the two contrastive modes, the so called the out-of-phase and in-phase modes appear. The proposed analytical method is verified by observing a good agreement to three dimensional finite element analysis results. All natural frequency of the in-phase modes can be predicted well by the combination of the dry beam modes. The theoretical prediction for the out-of-phase mode can be improved by using the polynomial functions satisfying the plate boundary conditions and fluid volume conservation instead of using dry beam modes.

  • PDF

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.

A Study on the Radiation Characteristics of the Conical Corrugated Feed Horn using the Gaussian Beam Mode (가우시안 빔 모드에 의한 원뿔형 컬러게이트 급전 혼의 복사특성에 관한 연구)

  • 장대석;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.515-522
    • /
    • 1994
  • The radiation characteristics of the conical corrugated feed horn are analyzed by the Gaussian beam mode theory. the electric field over the aperture can be expanded in terms of a set of Gaussian-Laguerre modes. It is proved that these modes are the solutions of the wave epuations for the paraxial approximation. A method, using the sum of the mode expansion coefficients instead of calculation only the fundamental mode, is presented in order to reduce the radiation pattern error. For illustrative examples, the radiation patterns of the corrugated horn antenna operting over C, Ku, and mm-wave band are calculated. Our results agree well with the results obtained by the vector potential method over each band, and also agree well with the measured value at 6.175GHz.

  • PDF

Modeling of flexible stick balencer and controller design (Flexible stick balencer에 대한 modeling과 제어에 관한 연구)

  • Seo, Ki-Won;Cho, Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.233-236
    • /
    • 1996
  • This paper describes a liner state-space model for a flexible stick balencer. The method employed to generate the model utilizes a separable formulation of assumed modes to represents the transverse displacement due to bending Lagrangian dynamics are applied to determine the kinetic and potential energies for the system. The resultant dynamic equations are then organized into a state space model and linearized using Taylor series expansion method. A minimum order observer is designed to estimate unmeasurable states.

  • PDF

Approaches of the Computaional Mechanics on the Stress Wave Analysis (응력파동해석에 대한 전산역학적 접근방법)

  • 조윤호;정현규;김승호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF

A Gridless Finite Difference Method for Elastic Crack Analysis (탄성균열해석을 위한 그리드 없는 유한차분법)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2007
  • This study presents a new gridless finite difference method for solving elastic crack problems. The method constructs the Taylor expansion based on the MLS(Moving Least Squares) method and effectively calculates the approximation and its derivatives without differentiation process. Since no connectivity between nodes is required, the modeling of discontinuity embedded in the domain is very convenient and discontinuity effect due to crack is naturally implemented in the construction of difference equations. Direct discretization of the governing partial differential equations makes solution process faster than other numerical schemes using numerical integration. Numerical results for mode I and II crack problems demonstrates that the proposed method accurately and efficiently evaluates the stress intensity factors.

Analysis of a Tapered Rectangular Waveguide for V to W Millimeter Wavebands

  • Lee, Sangsu;Son, Dongchan;Kwon, Jae-Yong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.248-253
    • /
    • 2018
  • An electromagnetic boundary-value problem of a tapered rectangular waveguide is rigorously solved based on eigenfunction expansion and the mode-matching method. Scattering parameters of the tapered rectangular waveguide are represented in a series form and calculated in terms of different rectangular waveguide combinations. Computation is performed to analyze reflection and transmission characteristics. Conductor loss by surface current density is also calculated and discussed.

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.