• 제목/요약/키워드: Mode II fracture toughness

검색결과 56건 처리시간 0.026초

MMB시험에 의한 평직 CFRP/GFRP 적층판 혼합모드 층간분리의 실험적 평가 (The Experimental Evaluation of the Mixed Mode Delamination in Woven CFRP/GFRP Laminates under MMB Test)

  • 곽정훈;강지웅;권오헌
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.14-18
    • /
    • 2013
  • Blades of horizontal axis are nowadays made of composite materials. Generally, composite materials satisfy design provides lower weight and good stiffness, while laminate composites have often damages as like the delamination and cracks at the interface of laminates. The box spar and tail parts of a blade are composed of the CFRP/GFRP hybrid laminate composites. However, delamination and the interfacial crack often occur in the interface of CFRP/GFRP hybrid laminate composites under the mixed mode fracture condition, especially mode I and mode II. Therefore, there is a need for the evaluation of the mixed mode fracture behavior during the delamination of CFRP/GFRP hybrid laminates. This study shows the experimental results for the delamination fracture toughness in CFRP/GFRP hybrid laminate composites. Fracture toughness experiments and estimation are performed by using DMMB(Dissimilar mixed mode bending) specimen. The materials used in the test are a commercial woven type CFRP(Carbon fiber reinforced plastic) prepreg(CF3327) and UD type GFRP(Glass fiber reinforced plastic) prepreg(HD224A). A CFRP/GFRP hybrid laminate composite is composed by the 10 plies CFRP and GFRP prepreg for DMMB. A thickness of CFRP and GFRP layer is 2.5mm and 3.0mm, respectively. Also the fulcrum location which is a loading parameter is changed from 80 to 100mm on the specimen of length 120mm because it defines the ratio of mode I to mode II. In this study, the effects of the fulcrum location are evaluated in the viewpoint of energy release rate in mode I and mode II contribution. The results show that the delamination crack initiates at higher displacement and lower load according to the increase of the fulcrum location ratio. And the variation of the energy release rate for mode I and II contributions for the mode mixity are shown.

하이브리드 복합재료의 모드II 층간파괴인성치에 관한 연구 (A Study on Mode II Interlaminar Fracture Toughness of Hybrid Composites)

  • 김형진;박명일;곽대원;김재동;고성위
    • 한국해양공학회지
    • /
    • 제16권4호
    • /
    • pp.42-47
    • /
    • 2002
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode II interlaminar fracture toughness of hybrid composite by using end notched flexure(ENF) specimen. In the range of loading rate 0.5~2mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate( $G_{IIc}$). there is no dependence of the interlaminar fracture energy upon the specimen width over the specimen widths examined. The value of $G_{IIc}$ for variation of initial crack length are nearly similiar values when material properties are CF/CF and GF/GF, however, the value of $G_{IIc}$ are highest with the increasing intial crack length at CF/GF. The values of $G_{IIc}$ for variation material properties are higher with the increasing moulding pressure when moulding pressures are 307, 431, 585㎪. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.e CF/GF.

복합재료/금속 접착 계면의 파괴인성치 측정 (Interfacial Fracture Toughness Measurement of Composite/metal Bonding)

  • 김원석;이정주
    • Composites Research
    • /
    • 제21권4호
    • /
    • pp.7-14
    • /
    • 2008
  • 접착제 이용 결합 조인트의 하중지지 능력 예측 기법은 점착제를 이용한 접합 조인트 설계에 있어서 가장 중요한 기술이다. 본 연구 계면 파괴역학을 이용하여 복합재료/금속 접착 조인트의 하중지시 능력을 예측하는 기법을 소개한다. 구체적으로 복합재료/탄소강 결합의 접착 강도를 계면 균열의 에너지 방출률과 계면 파괴인성치 개념을 사용하여 평가하는 방법을 제시 검증하였다. 계면 균열의 에너지 방출률은 유한요소해선 결과를 이용한 가상 균열 닫음 기법 (VCCT)을 사용하여 계산하였으며, 게면 파괴인성치는 이종재료 ENF (end-notched flexure) 시편을 고안하여 측정하였다. 고안된 이종 재료 ENF 시편을 사용하여 시편의 두께에 상관없이 일관된 Mode II 계면 파괴인성치를 측정할 수 있음과 양면 겹치기 접합 조인트의 특성 에너지 방출률이 측정된 계면 파괴인성치와 일치함을 확인하였다. 따라서 에너지 방출률에 근거한 계면 균열 진전 기준은 접착 조인트의 하중지지 능력을 신뢰성 있게 예측하는 실제적인 설계 도구로서 활용될 수 있다.

CFRP 적층판의 수지함량이 층간파괴인성치에 미치는 영향 (Interlaminar Fracture Toughness of CFRP Laminate Plates by Resin Content)

  • 강태식;김지훈;심재기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.675-678
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon fiber reinforcement plastics). Specimens used in this experiment are CF/EPOXY laminated plates. In this experiments, Split Hopkinson s Bar test was applied to dynamic and notched flexure test. The mode II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reactions at the supported points. As an experimental result, the vibration amplitude of 〔$0_{10}F_4/0_{10}$〕laminates appear more than that of 〔0_{10}/F_2/0_{10}$〕laminates for the J-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen with the increase of displacement velocity becomes great at a measuring point with in range of measurement.

  • PDF

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • 제30권1호
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

수지함량에 따른 CFRP 적층판의 층간파괴 인성평가 (Evaluation of Fracture Toughness of Dynamic Interlaminar for CFRP Laminate Plates by Resin Content)

  • 김지훈;양인영;심재기
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.43-49
    • /
    • 2003
  • This research work has been carried out for finding J-integral in mode II of CFRP(carbon fiber reinforced plastics) laminate plates based on the classical bar theory in dynamic conditions with consideration of the effect of inertia forces, eventually to lead to finding the dynamic inter-layer fracture toughness. Dynamic inter-layer fracture toughness was found by a self-made ENF(End Notched Flexure) experimental apparatus using Split Hopkinson's Bar(SHPB), and also observed the variation of the fracture toughness haying different resin contents and fiber arrangements of CFRP specimen([$0_3^{\circ}/90_3^{\circ}/0_6^{\circ}/90_3^{\circ}/0_3^{\circ}$], [$0_{20}^{\circ}$], [$0_5^{\circ}/90_{10}^{\circ}/0_5^{\circ}$]). As an experimental result, in either cases of quasi-static or dynamic load condition, the critical load and the inter-layer fracture toughness increased sharply depending on the increase of resin contents. Therefore, it could, be concluded that the effect by resin contents is the major factor determining the inter-layer fracture toughness in the CFRP laminate plates.

인장하중하에서의 고분자/거친금속 계면의 파손에 대한 비교연구 II: 접착모델 (Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading II: Adhesion Model)

  • 이호영;김성룡
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.6-13
    • /
    • 2005
  • Copper based leadframe sheets were immersed in two kinds of hot alkaline solutions to form brown-oxide or blackoxide layer on the surface. The oxide-coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched double-cantilever beam (SDCB) specimens. The SDCB specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under quasi-Mode I loading conditions. After fracture toughness testing, the fracture surface were analyzed by various equipment to investigate failure path. An adhesion model was suggested to explain the failure path formation. The adhesion model is based on the strengthening mechanism of fiber-reinforced composite. The present paper deals with the introduction of the adhesion model. The explanation of the failure path with the proposed adhesion model was introduced in the companion paper.

4점굽힘 CNF 시험편을 이용한 CFRP적층 복합재 모드 II 층간파괴 (A Study of Mode II Interlaminar Fracture for CFRP Laminate Composite using the 4-point Bending CNF Specimen)

  • 권오현;강지웅;태환준;황용연;윤유성
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.34-39
    • /
    • 2010
  • Unidirectional Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness and strength. For those reasons, the use of the unidirectional CFRP has increased in jet fighters, aerospace structures. However, unidirectional CFRP composites have a lot of problems, especially delamination, compared with traditional materials such as steels and aluminums, and so forth. Therefore, the interlaminar fracture toughness for a laminate CFRP composite is very important. In this study, The mode II interlaminar fracture toughness was measured by using center notched flexure(CNF) test specimen. The CNF specimens using unidirectional carbon prepreg were fabricated by a hot-press with the gage pressure and temperature controller. And three kinds of a/L ratio was applied to these specimens. Here, we discuss the relations of the crack growth and the mode II interlaminar fracture under the four point bending CNF test. From the results, we shows that mode II interlaminar was occurred when the more $a_0$/L ratio, the less load. And $G_{IIC}$ also were obtained as 5.33, 2.9 and $0.58kJ/m^2$ according to $a_0$/L ratio=0.2, 0.3 and 0.4.

CFRP 적층판의 동적 층간파괴인성의 평가법 (A Study on the Estimation of Dynamic Interlaminar Fracture Toughness on CFRP Laminates Plates)

  • 김지훈;김영남;판부직규;양인영
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.80-91
    • /
    • 1998
  • In this paper, the estimation of dynamic interlaminar fracture toughness on fracture mode II in CFRP(carbon fiber reinforced plastics) laminates in made. Dynamic ENF(End Notched Flexure) apparatus used in this paper is manufactured by suing Split Hopkinson Pressure Bar. The static and impact load history in the CFRP specimen is measured by using manufactured dynamic ENF tester and 3-point bending test is carried out to find the load history. Also dynamic interlaminar fracture toughness can be found by using the J integral obrained from dynamic analysis in consideration of intertia-force effect.

  • PDF