• Title/Summary/Keyword: Mode Decomposition

Search Result 366, Processing Time 0.026 seconds

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

Analysis of Stress Intensity Factors for Circular arc Cracks by Boundary Element Method (경계요소법에 의한 아크균열의 응력확대계수 해석)

  • 백열선;이장규;우창기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • In this paper, A circular arc crackered plate in biaxially stretched sheets was investigated in the boundary element method. The applications of fracture mechanics have traditionally concentrated on crack problems under an mode I, straight crack. However, many service failures occur from growth of cracks subjected to mixed mode loadings. A rectangular plate with arc crack or slanted central crack, under biaxial tensile loading, was treated analytically and also solved numerically. The Results from BEM applying different loading conditions, crack length (a/W), arc angle($\alpha$) are presented and discussed. The stress intensity factors are evaluated by the techniques of the J-integral. The decomposition method, used to decouple the stress intensity factors in mixed mode problems, is implemented by a considering a small circular contour path around each crack tip. The BIE method was successfully applied to a circular arc crackerd plate problem, also slanted centre cracked plate under mixed mode.

  • PDF

Nonlinear Modeling of Dynamic AFM Using Proper Orthogonal Modes (적합직교모드를 이용한 동적모드 AFM 의 비선형 모델링)

  • Hong, Sang-Hyuk;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.379-382
    • /
    • 2007
  • The proper orthogonal decomposition(POD) is used to the modal analysis of microcantilever of dynamic mode atomic force microscopy(AFM). The proper orthogonal modes(POM) are extracted from vibrating signals of microcantilever when it resonates and taps the sample. The POMs resemble the linear normal modes(LNM) of cantilever vibrating at each resonance frequency. Some of POMs in tapping microcantilever show quite different shapes from the POMs of the resonating microcantilever. Also this POMs can be applied to model for the complex nonlinear behavior of the dynamic mode AFM microcantilevers.

  • PDF

Forecasting Bulk Freight Rates with Machine Learning Methods

  • Lim, Sangseop;Kim, Seokhun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.127-132
    • /
    • 2021
  • This paper applies a machine learning model to forecasting freight rates in dry bulk and tanker markets with wavelet decomposition and empirical mode decomposition because they can refect both information scattered in the time and frequency domain. The decomposition with wavelet is outperformed for the dry bulk market, and EMD is the more proper model in the tanker market. This result provides market players with a practical short-term forecasting method. This study contributes to expanding a variety of predictive methodologies for one of the highly volatile markets. Furthermore, the proposed model is expected to improve the quality of decision-making in spot freight trading, which is the most frequent transaction in the shipping industry.

Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : II. Correlation analysis (경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : II. 상관관계 분석)

  • Ahn, Si-Kweon;Choi, Wonyoung;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.207-215
    • /
    • 2016
  • In this study, it is analyzed how large scale climate variation has an effect on climate systems over Korea using correlation analysis between climate indices and Intrinsic Mode Functions (IMFs) of precipitation and temperature. For this purpose, the estimated IMFs of precipitation and temperature from the accompanying paper were used. Furthermore, cross correlation coefficients and lag time between climate indices and IMFs were calculated considering periodicities and tendencies. As results, more accurate correlation coefficients were obtained compared with those between climate indices and raw precipitation and temperature data. We found that the Korean climate is closely related with climate variations of $El-Ni{\tilde{n}}o$ in terms of periodicity and its tendency is followed with increasing sea surface temperature due to climate change.

A Frequency Domain Analysis of Corneal Deformation by Air Puff (Air puff에 의한 각막 변형의 주파수 영역 분석)

  • Hwang, Ho-Sik;Lee, Byeong Ha;Lee, Chang Su
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.240-247
    • /
    • 2014
  • Intraocular pressure is measured after a cornea air puff by observing biomechanical properties such as thickness or displacement of the cornea. In this paper, we deal with a frequency domain analysis of corneal deformation in the air puff tonometry that is used to diagnose glaucoma or lasik. We distinguish the patient from the normal by measuring the oscillation frequency in the neighborhood of the central cornea section. A binary image was obtained from the video images, and cornea vertical oscillation profile was extracted from the difference between the vertical displacement data and the curve fitting. In terms of Fourier transform, a vibration frequency of 479.2Hz for the patient was obtained as well as more higher 702.8Hz for the normal due to stiffness. Hilbert-Huang transform's empirical mode decomposition generally describes local, nonlinear, and nonstationary data. After the data were decomposed into intrinsic mode functions, a spectrum and power were analysed. Finally, we confirm that the patient has 6 times more higher power ratio for the specific intrinsic mode function between the patient and the normal.

Matched Field Source Localization and Interference Suppression Using Mode Space Estimation (정합장 기반 표적 위치추정 시 모드공간 분석을 통한 간섭 신호 제거 기법)

  • Kim, Kyung-Seop;Seong, Woo-Jae;Pyo, Sang-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2008
  • Weak target detection and localization in the presence of loud surface ship noise is a critical problem for matched field processing (MFP) in shallow water. For stationary sources, each signal component of received signal can be separated and interference can be suppressed using eigen space analysis schemes. However, source motion, in realistic cases, causes spreading of signal energies in their subspace. In this case, eigenvalues of target and interfere signal components are mixed and hard to be separated with usual phone space eigenvector decomposition (EVD) approaches. Our technique is based on mode space and utilizes the difference in their physical characteristics of surface and submerged sources. Performing EVD for modal cross spectral density matrix, interference components in the mode amplitude subspace can be classified and eliminated. This technique is demonstrated with synthetic data, and results are discussed.

Characteristics of NH3 Decomposition according to Discharge Mode in Elongated Rotating Arc Reactor (신장 회전아크 반응기에서 방전모드에 따른 암모니아 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Jo, Sung Kwon;Song, Young-Hoon;Kim, In Myoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.356-362
    • /
    • 2013
  • An attempt has been made to optimize elongated rotating arc plasma $NH_3$ scrubber. Among diverse semiconductor processes, diffusion and implantation process inevitably produce $NH_3$ as byproduct and efficient dry process for the decomposition of $NH_3$ is required. Plasma process does not produce NOx that is commonly produced in combustion process and there is no problem of deactivation, usually experienced in catalyst process. However, plasma process uses electrical energy and needs to be optimized to achieve feasibility of application. In this work, mode control of rotating arc is presented as tentative solution for the possible optimization of the process. Based on existing rotating arc, scale-up and following mode mapping was tried. Proposed reactor design was evaluated in the $NH_3$ decomposition process and revealed that optimization scheme is at hand. In the experiment of full scale scrubber including heat exchanger, the process gave more stable and efficient process of $NH_3$ decomposition.