• Title/Summary/Keyword: Modal index

Search Result 164, Processing Time 0.023 seconds

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Characteristics of Nanoscale Modes Guided by the Total External Reflection of Surface Plasmon-Polaritons (표면 플라즈몬-폴라리톤의 외부-전반사에 의해 도파되는 나노 크기 모드의 특성)

  • Seol, Kang Hee;Song, Seok Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Total external reflection (TER), which does not occur on a dielectric interface, is a unique feature of surface plasmon-polaritons (SPP). We propose an SPP-TER waveguide structure consisting of low-index dielectric nanocore covered with high-index dielectric on a flat metal surface. The SPP mode confined in the nanocore by the TER effect has a mode size much smaller than wavelength scale. Numerical comparison of mode characteristics between the SPP-TER waveguides and other total-internal-reflection-based waveguides such as metal or high-index dielectric nanowires show that the SPP-TER structures can possess higher modal gain for applications of nanocavity lasers.

Sensitivity-based Damage detection in deep water risers using modal parameters: numerical study

  • Min, Cheonhong;Kim, Hyungwoo;Yeu, Taekyeong;Hong, Sup
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.315-334
    • /
    • 2015
  • A main goal of this study is to propose a damage detection technique to detect and localize damages of a top-tensioned riser. In this paper, the top-tensioned finite element (FE) model is considered as an analytical model of the riser, and a vibration-based damage detection method is proposed. The present method consists of a FE model updating and damage index method. In order to accomplish the goal of this study, first, a sensitivity-based FE model updating method using natural frequencies and zero frequencies is introduced. Second, natural frequencies and zero frequencies of the axial mode on the top-tensioned riser are estimated by eigenvalue analysis. Finally, the locations and severities of the damages are estimated from the damage index method. Three numerical examples are considered to verify the performance of the proposed method.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Fluid Flow Characteristics for Minimizing the Area of Rapid Flow Inside the Water Tank to which the Multiple Hoe Screw Nozzle Incurrent Canal is Applied, by Using the Computational Fluid Dynamics (CFD) Simulation (전산유체해석(CFD) 모의를 이용한 다공형 스크류 노즐 입수관이 적용된 물탱크 내부의 사류구역 최소화에 대한 유동특성)

  • Song, Jun-Hyuck;Kwon, Jong-Woo;Choi, Jong-Woong;Wang, Chang-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.23-33
    • /
    • 2015
  • This study was carried out for the purpose of minimizing the area of rapid flow inside the water tank. And the shape of incurrent canal was improved, and then the characteristics of fluid flow occurring inside the water tank was analyzed by using the Computational Fluid Dynamics (CFD) simulation method. better multiple hoe screw nozzle incurrent canal was used instead of conventional drop current canal used for the water tank. And according to the results of analyzing the characteristics of fluid flow, in case a screw blade was installed inside the nozzle, fluid flow was sprayed wide. And wide fluid flow was shown inside the cylindrical water tank too. Besides, a tracer simulation was carried out, in case of installing 1 and 2 multiple hoe screw nozzle incurrent canals at the cubic water tank. As a result, MODAL, MODAL index value was close to 1, in case of installing 2 canals. Therefore, it was possible to obtain the results of being close to the characteristics of plug flow.

Estimation of Korea Transportation Service Index and Business Cycle Analysis (국내 교통산업 서비스 지수의 산정 및 경기순환분석)

  • Han, Sang-Yong;Jeong, Gyeong-Ok;Jeong, Gyeong-Min
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.53-63
    • /
    • 2006
  • The objective of this study is to estimate Korean transportation service index (KTSI), and to explore possible uses of the KTSI. The KTSI was monthly index to represent the level of passenger and freight services by road, railroad, air and maritime modes, which was developed from eight series. Four of these series measure the level of passenger services (passenger-kilometers) by road, railroad. air and maritime modes : monthly data from January 1995 to December 2004. Similarly. the remaining four series measure the level or freight activity (tonnage) by four modes during the same period. Given the weights of modal revenues, component series were aggregated into two indexes (passenger index and freight index) and a composite index using Chained Fisher Ideal index. which was a geometric mean of the Laspeyres index and the Passche index. The Fisher Ideal index is one of the 'superlative' indexes, which diminish 'substitution bias' as current-weighted indexes. As a result, the freight index and the composite index explain economic conditions better than the passenger index. Based on the composite index. the newly estimated KTSI shows an average lag time of one and a half years at peaks and three months at troughs in comparison with domestic business cycles. Nonetheless. the following efforts are needed for more credible and useful estimates; establishment of data collection scheme in time. credibility uplift of used data, development of various indexation methods.

Damage Detection of Shear Building Structures Using Dynamic Response (동적응답신호를 이용한 전단형 건물의 손상추정)

  • Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. The dynamic response of building structures has many noise and affected by nonstructural members and, above all, the behavior of building structure is more complex than civil structure and this makes the damage detection difficult. In recent researches the damage is detected by the indirect index such as sensitivity or assumed values. However, for the more reasonable damage detection, it needs to use the damage index directly induced from dynamic equation. The purpose of this study is to provide the damage detection method on shear building structures by the damage index directly induced from dynamic equation. The provided damage index could be estimated from measured mode shape of undamaged structure and frequency difference between undamaged and damaged structure. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. The damage index at damaged story represents (-) sign and 15 times than other undamaged sories.

Optimal feedback control of a flexible one-link robotic manipulator (유연한 단일링크 로봇 조작기의 최적귀환제어)

  • 하영균;김승호;이상조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.923-934
    • /
    • 1987
  • A flexible one-link robotic manipulator is modelled as a rotating cantilever beam with a hub and tip mass. An active control law is developed with consideration of the distributed flexibility of the arm. Equation of motion is derived by Hamilton's principle and, for modal control, represented as state variable form using Galerkin's mode summation method. Feedback coefficients are chosen to minimize the linear quadratic performance index(PI). To reconstruct the complete state vector from the measurements, an observer is proposed. In order to suppress vibration of the manipulator arm to desirable extent and to obtain accuracy of the positioning, weighting factor of input in PI is adjusted. Spillover effect due to the controller which controls several important modes is examined. Experiment is also performed to validate the theoretical analysis.

Dynamic model updating of the laminated composite plate using natural frequencies measured from modal test (고유진동수의 실험값을 사용한 복합재 적층판의 동적 모델링 개선)

  • 홍단비;유정규;박성호;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.340-346
    • /
    • 1998
  • In order to improve the prediction of dynamic behavior in structures, several lower vibration modes from FFT analysis through experiments are used to update the mechanical properties followed by the updated frequencies from numerical analysis. Performance index consists of the sum of error norms between the chosen frequencies and corresponding frequencies from numerical analysis. As an updating process of the natural frequencies, the optimization algorithm based on conjugate gradient method is adopted. The gradient of performance index is calculated using the sensitivity of selected eigenvalues with respect to each design parameter. The mechanical properties of lamina, E$\_$l/, E$\_$2/, .nu.$\_$12/ and G$\_$12/, are design parameters for the updating process. The proposed method is applied to predict the dynamic behavior of composite laminated plates of [0]$\_$8T/ and [.+-.45]$\_$2S/ separately or interchangeably. Also, the mixed case for [0]$\_$8T/ and [.+-.45]$\_$2S/ is exarm'ned to check the possibility for the improved prediction generally. The good agreement is obtained between the measured frequencies and the numerical ones. Based on the results for all the cases studied, the proposed approach has a clear potential in characterizing the mechanical properties of composite lamina.

  • PDF

Variations in Karyotypic Characteristics of Different Breed Groups of Water Buffaloes (Bubalus bubalis)

  • Bondoc, O.L.;Flor, M.C.G.T.;Rebollos, S.D.N.;Albarace, A.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.321-325
    • /
    • 2002
  • Karyotype analysis was carried out on blood samples of 30 water buffaloes belonging to different breed groups (i.e. Philippine Carabao (PC), Indian Murrah (IM), Bulgarian Murrah (BM), "$F_1$ 50% IM-50% PC", "$F_1$ 50% BM-50% PC" and "75% IM-25% PC"), using the modified Leucocyte Culture Technique. The modal chromosome numbers of the PC, "$F_1$ 50% IM-50% PC", "$F_1$ 50% BM-50% PC", IM, BM and "75% IM-25% PC" were 2n=48, 49, 49, 50, 50 and 50, respectively. The water buffalo chromosomes are mostly acrocentric (79.67%) and the remainder submetacentric (20.33%). Results of the ordinary least square analysis showed significant breed effects (p<0.01) on other karyotypic characteristics (i.e. relative length, arm ratio and centromeric index). Significant correlation between karyotypic characteristics and some animal performance traits were also found. The significant correlation values imply that karyotypic characteristics can be used as important criteria to select potentially productive young water buffaloes. In the future, more production and reproduction traits from non-institutional herds should be included in the analysis to reveal meaningful correlations with various karyotypic characteristics.