Browse > Article
http://dx.doi.org/10.3807/KJOP.2012.23.1.036

Characteristics of Nanoscale Modes Guided by the Total External Reflection of Surface Plasmon-Polaritons  

Seol, Kang Hee (Department of Physics, Hanyang University)
Song, Seok Ho (Department of Physics, Hanyang University)
Publication Information
Korean Journal of Optics and Photonics / v.23, no.1, 2012 , pp. 36-41 More about this Journal
Abstract
Total external reflection (TER), which does not occur on a dielectric interface, is a unique feature of surface plasmon-polaritons (SPP). We propose an SPP-TER waveguide structure consisting of low-index dielectric nanocore covered with high-index dielectric on a flat metal surface. The SPP mode confined in the nanocore by the TER effect has a mode size much smaller than wavelength scale. Numerical comparison of mode characteristics between the SPP-TER waveguides and other total-internal-reflection-based waveguides such as metal or high-index dielectric nanowires show that the SPP-TER structures can possess higher modal gain for applications of nanocavity lasers.
Keywords
Surface plasmon polaritons; Nanocavity lasers; Total external reflection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Nötzel, C. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009).   DOI
2 M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature 460, 1110-1113 (2009).   DOI   ScienceOn
3 R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009).   DOI   ScienceOn
4 R. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nature Mater. 10, 110-113 (2011).   DOI   ScienceOn
5 M. Seo, S. Kwon, H. Ee, and H. Park, "Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity," Nano Lett. 9, 4078-4082 (2009).   DOI   ScienceOn
6 A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).   DOI
7 M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006).   DOI   ScienceOn
8 P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).   DOI
9 J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polaritonlike waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).   DOI   ScienceOn
10 D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, San Diego, USA, 1991).
11 D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation : quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).   DOI
12 S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, New York, USA, 2007).