• 제목/요약/키워드: Modal assurance criteria

검색결과 19건 처리시간 0.019초

핵 연료봉 중간 지지격자의 모달 해석 및 실험 (Modal Analysis and Testing for a Middle Spacer Grid of a Nuclear Fuel Rod)

  • 류봉조;구경완
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1948-1952
    • /
    • 2012
  • The paper presents modal testing and analysis in order to obtain the dynamic characteristics of a middle spacer grids of a nuclear fuel rod. A spacer grid is one of the important structural elements supporting nuclear fuel rods. Such a fuel rod can be oscillated by its thermal expansion, neutron irradiation and etc. due to cooling water flow under the operation of a nuclear power plant. When the fuel rod vibrates, fretting wear due to repeated friction motion between the fuel rods and spacer grids can be occurred, and so the fuel rod is damaged. In this paper, through modal analysis and testing, natural frequencies and modes of a middle spacer grid were calculated, and the following conclusions were obtained. Firstly the numerical first-seven natural frequencies for spacer grids of a fuel rod having complicated structures have a small difference within 3.8% with experimental natural frequencies, and so the suitability of simulation results was verified. Secondly, experimental mode shapes for a middle spacer grid of a nuclear fuel rod were verified by obtaining lower non-diagonal terms through MAC(Modal Assurance Criteria), and were confirmed by the simulation modes.

Structural damage identification based on modified Cuckoo Search algorithm

  • Xu, H.J.;Liu, J.K.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.163-179
    • /
    • 2016
  • The Cuckoo search (CS) algorithm is a simple and efficient global optimization algorithm and it has been applied to figure out large range of real-world optimization problem. In this paper, a new formula is introduced to the discovering probability process to improve the convergence rate and the Tournament Selection Strategy is adopted to enhance global search ability of the certain algorithm. Then an approach for structural damage identification based on modified Cuckoo search (MCS) is presented. Meanwhile, we take frequency residual error and the modal assurance criterion (MAC) as indexes of damage detection in view of the crack damage, and the MCS algorithm is utilized to identifying the structural damage. A simply supported beam and a 31-bar truss are studied as numerical example to illustrate the correctness and efficiency of the propose method. Besides, a laboratory work is also conducted to further verification. Studies show that, the proposed method can judge the damage location and degree of structures more accurately than its counterpart even under measurement noise, which demonstrates the MCS algorithm has a higher damage diagnosis precision.

Structural damage identification using gravitational search algorithm

  • Liu, J.K.;Wei, Z.T.;Lu, Z.R.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.729-747
    • /
    • 2016
  • This study aims to present a novel optimization algorithm known as gravitational search algorithm (GSA) for structural damage detection. An objective function for damage detection is established based on structural vibration data in frequency domain, i.e., natural frequencies and mode shapes. The feasibility and efficiency of the GSA are testified on three different structures, i.e., a beam, a truss and a plate. Results show that the proposed strategy is efficient for determining the locations and the extents of structural damages using the first several modal data of the structure. Multiple damages cases in different types of structures are studied and good identification results can be obtained. The effect of measurement noise on the identification results is investigated.

Progressive damage detection of thin plate structures using wavelet finite element model updating

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.277-290
    • /
    • 2018
  • In this paper, wavelet finite element model (WFEM) updating technique is employed to detect sub-element damage in thin plate structures progressively. The procedure of WFEM-based detection method, which can detect sub-element damage gradually, is established. This method involves the optimization of an objective function that combines frequencies and modal assurance criteria (MAC). During the damage detection process, the scales of wavelet elements in the concerned regions are adaptively enhanced or reduced to remain compatible with the gradually identified damage scenarios, while the modal properties from the tests remains the same, i.e., no measurement point replacement or addition are needed. Numerical and experimental examples were conducted to examine the effectiveness of the proposed method. A scanning Doppler laser vibrometer system was employed to measure the plate mode shapes in the experimental study. The results indicate that the proposed method can detect structural damage with satisfactory accuracy by using minimal degrees-of-freedoms (DOFs) in the model and minimal updating parameters in optimization.

Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands

  • Yi, Ting-Hua;Li, Hong-Nan;Wang, Xiang
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.235-250
    • /
    • 2013
  • Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. According to the mathematical background and implicit assumptions made in the triaxial effective independence (EfI) method, this paper presents a novel multi-dimensional OSP method for the Canton Tower focusing on application demands. In contrast to existing methods, the presented method renders the corresponding target mode shape partitions as linearly independent as possible and, at the same time, maintains the stability of the modal matrix in the iteration process. The modal assurance criterion (MAC), determinant of the Fisher Information Matrix (FIM) and condition number of the FIM have been taken as the optimal criteria, respectively, to demonstrate the feasibility and effectiveness of the proposed method. Numerical investigations suggest that the proposed method outperforms the original EfI method in all instances as expected, which is looked forward to be even more pronounced should it be used for other multi-dimensional optimization problems.

KSR-III의 전기체 모달 시험 (Ground Vibration Test for Korea Sounding Rocket - III)

  • 우성현;김영기;이동우;문남진;김홍배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

기여도 분석법을 이용한 자동차 브레이크 시스템의 스퀼 소음 예측 (The Prediction of Brake Corner Module Squeal Noise Using Participation Factor Analysis)

  • 이종기;임현석;김희용;백재욱
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1074-1080
    • /
    • 2009
  • A method for determining the geometric stability characteristics of a brake corner module (BCM) is presented. Since disc brake "squeal" noise typically occurs at unstable resonant frequencies of a system, the likelihood of disc brake squeal for a particular design can be determined. Finite element methods are used to derive complex eigenvalue for a brake corner module. Some unstable modes calculated by finite element methods correspond to squeal noise data. Through kinetic energy participation analysis for each part of BCM, we can efficiently predict squeal noise data.

플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계 (2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding)

  • 하창용;이수일
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

교량 케이블시스템의 모드변수에 관한 연구 (A Study on the Modal Parameters for Cable System of Bridge)

  • 이현철;조영훈;김진수;박경호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.48-59
    • /
    • 2019
  • 최근 들어 장대교량의 건설에 현수교, 사장교 등과 같은 케이블이 주 요소인 교량 형식이 급증하고 있다. 이와 같은 구조물에서 케이블이 미치는 영향은 매우 크며, 구조해석을 위해서 케이블에 대한 연구 및 케이블의 모드 특성에 따른 구조계의 변화를 연구해 볼 필요가 있다. 특히, 케이블은 거더에 가해지는 하중효과를 주탑으로 전달하는 캠버조절과 직결되고 전체 구조에서 중요한 부재로서, 가설시 가해지는 초기 장력과 시간이 경과후 장력을 비교하므로서 교량의 노후상태와 이상유무를 파악하는 데 기여하고자 본 연구를 수행하였다. 따라서 본 연구에서는 충격해머를 통한 모드 해석으로부터 케이블의 질량과 케이블의 길이변화에 따른 모드의 특성을 파악할 수 있었고, 공용중에 있는 케이블에서는 위상각의 변화가 비례관계임을 확인하였다. 또한 저차모드에서 지배모드가 결정되는 특성을 MAC분석을 통하여 알 수 있었다.