DOI QR코드

DOI QR Code

Structural damage identification using gravitational search algorithm

  • Liu, J.K. (Department of Applied Mechanics, Sun Yat-sen University) ;
  • Wei, Z.T. (Department of Applied Mechanics, Sun Yat-sen University) ;
  • Lu, Z.R. (Department of Applied Mechanics, Sun Yat-sen University) ;
  • Ou, Y.J. (Department of Mechanics and Civil Engineering, Jinan University)
  • Received : 2015.12.20
  • Accepted : 2016.09.30
  • Published : 2016.11.25

Abstract

This study aims to present a novel optimization algorithm known as gravitational search algorithm (GSA) for structural damage detection. An objective function for damage detection is established based on structural vibration data in frequency domain, i.e., natural frequencies and mode shapes. The feasibility and efficiency of the GSA are testified on three different structures, i.e., a beam, a truss and a plate. Results show that the proposed strategy is efficient for determining the locations and the extents of structural damages using the first several modal data of the structure. Multiple damages cases in different types of structures are studied and good identification results can be obtained. The effect of measurement noise on the identification results is investigated.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Guangdong Province Natural Science Foundation

References

  1. Bahrololoum, A., Nezamabadi-Pour, H., Bahrololoum, H. and Saeed, M. (2012), "A prototype classifier based on gravitational search algorithm", Appl. Soft Comput., 12(2), 819-825. https://doi.org/10.1016/j.asoc.2011.10.008
  2. Begambre, O. and Laier, J.E. (2009), "A hybrid Particle Swarm Optimization-Simplex algorithm (PSOS) for structural damage identification", Adv. Eng. Softw., 40(9), 883-891. https://doi.org/10.1016/j.advengsoft.2009.01.004
  3. Buezas, F.S., Rosales, M.B. and Filipich, C.P. (2011), "Damage detection with genetic algorithms taking into account a crack contact model", Eng. Fract. Mech., 78(4), 695-712. https://doi.org/10.1016/j.engfracmech.2010.11.008
  4. Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X
  5. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  6. Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory". Proceedings of the sixth International Symposium on Micro Machine and Human Science, New York, NY.
  7. Farivar, F. and Shoorehdeli, M.A. (2016), "Stability analysis of particle dynamics in gravitation search optimization algorithm", Inform. Sci., 337-338, 25-43. https://doi.org/10.1016/j.ins.2015.12.017
  8. Ghorbani, F. and Nezamabadi-pour, H. (2012), "On the convergence analysis of gravitational search algorithm", J. Adv. Comput. Res., 3(2), 45-51.
  9. Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civil Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
  10. He, R.S. and Hwang, S.F. (2006), "Damage detection by an adaptive real-parameter simulated annealing genetic algorithm", Comput. Struct., 84(31), 2231-2243. https://doi.org/10.1016/j.compstruc.2006.08.031
  11. Housner, G.W., Bergman, L.A., Caughey, T., Chassiakos, A., Claus, R., Masri, S. and Yao, J.T. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  12. Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050
  13. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Perth, Australia.
  14. Khatibinia, M. and Naseralavi, S.S. (2014), "Truss optimization on shape and sizing with frequency constraints based on orthogonal multi-gravitational search algorithm", J. Sound Vib., 333(24), 6349-6369. https://doi.org/10.1016/j.jsv.2014.07.027
  15. Li, C. and Zhou, J. (2011), "Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm", Energy Convers. Manag., 52(1), 374-381. https://doi.org/10.1016/j.enconman.2010.07.012
  16. Li, S. and Lu, Z.R. (2015), "Multi-swarm fruit fly optimization algorithm for structural damage identification", Struct. Eng. Mech., 56(3), 409-422. https://doi.org/10.12989/sem.2015.56.3.409
  17. Mohan, S., Maiti, D.K. and Maity, D. (2013), "Structural damage assessment using FRF employing particle swarm optimization", Appl. Math. Comput., 219(20), 10387-10400. https://doi.org/10.1016/j.amc.2013.04.016
  18. Poli, R., Kennedy, J. and Blackwell, T. (2007), "Particle swarm optimization", Swarm Intel., 1(1), 33-57. https://doi.org/10.1007/s11721-007-0002-0
  19. Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), "GSA: a gravitational search algorithm", Inform. Sci., 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
  20. Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2011), "Filter modeling using gravitational search algorithm", Eng. Appl. Artif. Intel., 24(1), 117-122. https://doi.org/10.1016/j.engappai.2010.05.007
  21. Sahoo, B. and Maity, D. (2007), "Damage assessment of structures using hybrid neuro-genetic algorithm", Appl. Soft Comput., 7(1), 89-104. https://doi.org/10.1016/j.asoc.2005.04.001
  22. Sarafrazi, S. and Nezamabadi-pour, H. (2013), "Facing the classification of binary problems with a GSASVM hybrid system", Math. Comput. Model., 57(1), 270-278. https://doi.org/10.1016/j.mcm.2011.06.048
  23. Shi, Y.H. and Eberhart, R. (1998), "A modified particle swarm optimizer", Evolutionary Computation Proceedings of the IEEE World Congress on Computational Intelligence, 69-73.
  24. Su, Z.K. and Wang H.L. (2015), "A novel robust hybrid gravitational search algorithm for reusable launch vehicle approach and landing trajectory optimization", Nerocomput., 162, 116-127. https://doi.org/10.1016/j.neucom.2015.03.063
  25. Vakil-Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and Ettefagh, M.M. (2008), "Crack detection in beam-like structures using genetic algorithms", Appl. Soft Comput., 8(2), 1150-1160. https://doi.org/10.1016/j.asoc.2007.10.003
  26. Vakil Baghmisheh, M.T., Peimani, M., Sadeghi, M.H., Ettefagh, M.M. and Tabrizi, A.F. (2012), "A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams", Appl. Soft Comput., 12(8), 2217-2226. https://doi.org/10.1016/j.asoc.2012.03.030
  27. Xu, H.J., Ding, Z.H., Lu, Z.R. and Liu, J.K. (2015), "Structural damage detection based on Chaotic Artificial Bee Colony algorithm", Struct. Eng. Mech., 55(6), 1223-1235. https://doi.org/10.12989/sem.2015.55.6.1223
  28. Xu, B.C. and Zhang, Y.Y. (2014), "An improved gravitational search algorithm for dynamic neural network identification", Int. J. Automat. Comput., 11(4), 434-440. https://doi.org/10.1007/s11633-014-0810-9
  29. Yuan, X.H., Chen, Z.H. Yuan, Y.B. (2015), "A strength Pareto Gravitational Search Algorithm for multiobjective optimization problems", Int. J. Patt. Recog. Artif. Intel., 29(6), 1559010. https://doi.org/10.1142/S0218001415590107

Cited by

  1. Accelerated multi-gravitational search algorithm for size optimization of truss structures vol.38, 2018, https://doi.org/10.1016/j.swevo.2017.07.001