Acknowledgement
Supported by : National Natural Science Foundation of China, Guangdong Province Natural Science Foundation
References
- Bahrololoum, A., Nezamabadi-Pour, H., Bahrololoum, H. and Saeed, M. (2012), "A prototype classifier based on gravitational search algorithm", Appl. Soft Comput., 12(2), 819-825. https://doi.org/10.1016/j.asoc.2011.10.008
- Begambre, O. and Laier, J.E. (2009), "A hybrid Particle Swarm Optimization-Simplex algorithm (PSOS) for structural damage identification", Adv. Eng. Softw., 40(9), 883-891. https://doi.org/10.1016/j.advengsoft.2009.01.004
- Buezas, F.S., Rosales, M.B. and Filipich, C.P. (2011), "Damage detection with genetic algorithms taking into account a crack contact model", Eng. Fract. Mech., 78(4), 695-712. https://doi.org/10.1016/j.engfracmech.2010.11.008
- Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory". Proceedings of the sixth International Symposium on Micro Machine and Human Science, New York, NY.
- Farivar, F. and Shoorehdeli, M.A. (2016), "Stability analysis of particle dynamics in gravitation search optimization algorithm", Inform. Sci., 337-338, 25-43. https://doi.org/10.1016/j.ins.2015.12.017
- Ghorbani, F. and Nezamabadi-pour, H. (2012), "On the convergence analysis of gravitational search algorithm", J. Adv. Comput. Res., 3(2), 45-51.
- Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civil Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
- He, R.S. and Hwang, S.F. (2006), "Damage detection by an adaptive real-parameter simulated annealing genetic algorithm", Comput. Struct., 84(31), 2231-2243. https://doi.org/10.1016/j.compstruc.2006.08.031
- Housner, G.W., Bergman, L.A., Caughey, T., Chassiakos, A., Claus, R., Masri, S. and Yao, J.T. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Perth, Australia.
- Khatibinia, M. and Naseralavi, S.S. (2014), "Truss optimization on shape and sizing with frequency constraints based on orthogonal multi-gravitational search algorithm", J. Sound Vib., 333(24), 6349-6369. https://doi.org/10.1016/j.jsv.2014.07.027
- Li, C. and Zhou, J. (2011), "Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm", Energy Convers. Manag., 52(1), 374-381. https://doi.org/10.1016/j.enconman.2010.07.012
- Li, S. and Lu, Z.R. (2015), "Multi-swarm fruit fly optimization algorithm for structural damage identification", Struct. Eng. Mech., 56(3), 409-422. https://doi.org/10.12989/sem.2015.56.3.409
- Mohan, S., Maiti, D.K. and Maity, D. (2013), "Structural damage assessment using FRF employing particle swarm optimization", Appl. Math. Comput., 219(20), 10387-10400. https://doi.org/10.1016/j.amc.2013.04.016
- Poli, R., Kennedy, J. and Blackwell, T. (2007), "Particle swarm optimization", Swarm Intel., 1(1), 33-57. https://doi.org/10.1007/s11721-007-0002-0
- Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), "GSA: a gravitational search algorithm", Inform. Sci., 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
- Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2011), "Filter modeling using gravitational search algorithm", Eng. Appl. Artif. Intel., 24(1), 117-122. https://doi.org/10.1016/j.engappai.2010.05.007
- Sahoo, B. and Maity, D. (2007), "Damage assessment of structures using hybrid neuro-genetic algorithm", Appl. Soft Comput., 7(1), 89-104. https://doi.org/10.1016/j.asoc.2005.04.001
- Sarafrazi, S. and Nezamabadi-pour, H. (2013), "Facing the classification of binary problems with a GSASVM hybrid system", Math. Comput. Model., 57(1), 270-278. https://doi.org/10.1016/j.mcm.2011.06.048
- Shi, Y.H. and Eberhart, R. (1998), "A modified particle swarm optimizer", Evolutionary Computation Proceedings of the IEEE World Congress on Computational Intelligence, 69-73.
- Su, Z.K. and Wang H.L. (2015), "A novel robust hybrid gravitational search algorithm for reusable launch vehicle approach and landing trajectory optimization", Nerocomput., 162, 116-127. https://doi.org/10.1016/j.neucom.2015.03.063
- Vakil-Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and Ettefagh, M.M. (2008), "Crack detection in beam-like structures using genetic algorithms", Appl. Soft Comput., 8(2), 1150-1160. https://doi.org/10.1016/j.asoc.2007.10.003
- Vakil Baghmisheh, M.T., Peimani, M., Sadeghi, M.H., Ettefagh, M.M. and Tabrizi, A.F. (2012), "A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams", Appl. Soft Comput., 12(8), 2217-2226. https://doi.org/10.1016/j.asoc.2012.03.030
- Xu, H.J., Ding, Z.H., Lu, Z.R. and Liu, J.K. (2015), "Structural damage detection based on Chaotic Artificial Bee Colony algorithm", Struct. Eng. Mech., 55(6), 1223-1235. https://doi.org/10.12989/sem.2015.55.6.1223
- Xu, B.C. and Zhang, Y.Y. (2014), "An improved gravitational search algorithm for dynamic neural network identification", Int. J. Automat. Comput., 11(4), 434-440. https://doi.org/10.1007/s11633-014-0810-9
- Yuan, X.H., Chen, Z.H. Yuan, Y.B. (2015), "A strength Pareto Gravitational Search Algorithm for multiobjective optimization problems", Int. J. Patt. Recog. Artif. Intel., 29(6), 1559010. https://doi.org/10.1142/S0218001415590107
Cited by
- Accelerated multi-gravitational search algorithm for size optimization of truss structures vol.38, 2018, https://doi.org/10.1016/j.swevo.2017.07.001