• 제목/요약/키워드: Modal Test

검색결과 717건 처리시간 0.027초

자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험 (Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine)

  • 손인수;허상범;안성진
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.

샌드위치 평판의 모드 감쇠 최대화를 위한 점탄성층 두께 결정법 (A Method to Determine Optimum Viscoelastic Layer Thickness of Sandwich Plate for Maximum Modal Damping)

  • 남대호;신윤호;김광준
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.690-696
    • /
    • 2006
  • Thickness of damping layer in sandwich plate needs to be optimized in order to make modal loss factor of the sandwich plate maximum. Since previous studies were interested in noise reductions over high frequency range, the modal properties were derived based on simply supported boundaries. This conventional formula is approximately applicable to other boundary conditions over high frequency range only. The purpose of this study is to propose a method to determine optimum damping layer thickness of sandwich plate for maximum modal damping in low frequency range when the boundary condition is not a simple support. The conventional RKU equation based on simply supported boundary is modified to reflect other boundary conditions and the modified RKU equation is subsequently applied to determine the optimum damping layer thickness for arbitrary conditions. In order to reflect frequency-dependent characteristics of elastic modulus of the damping layer, an iteration method is proposed in determining the modal properties. Test results on sandwich plates for optimum damping layer thickness are compared with predictions by the proposed method and conventional method.

실험적 모드해석을 이용한 다물체계내 유연체의 변형보드 계산 (Computation for Deformation Modes of a Flexible Body in Multibody System using Experimental Modal Analysis)

  • 김효식;김상섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1718-1723
    • /
    • 2003
  • This paper presents a computational method for deformation modes of a flexible body in multibody system from the experimental modal analysis and an efficient method for flexible multibody dynamic analysis by use of the modes. It is difficult to directly use experimental modal parameters in flexible multibody dynamic analysis. The major reasons are that there are many inconsistencies between experimental and analytical modal data and experimental noises are inherent in the experimental data. So two methods, such as, a method for ortho-normalization of experimental modes and the other one for mode expansion, are suggested to gain deformation modes of a flexible body from the experimental modal parameters. Using the virtual work principle, the equation of motion of a flexible body is derived. The effectiveness of the proposed method will be verified in the numerical example of cab vibration of a truck by comparing analysis and test results.

  • PDF

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

모드 연성을 수반하는 분할 모형의 비틀림 감쇠비 추정 (Torsional Damping Estimation of a Segmented Hull Model with Modal Coupling)

  • 김유일;박성건
    • 대한조선학회논문집
    • /
    • 제53권6호
    • /
    • pp.482-493
    • /
    • 2016
  • The identification of modal damping of a segmented hull model with torsional response is difficult task due to the coupling of modal response. This is because the 1st and 2nd torsional vibration modes are closely spaced in frequency domain leading to the situation that the modal decomposition is difficult to achieve by simple band-pass filter. Present study applied several different modal decomposition methods to derive the damping ratio of different modes. The modal decomposition methods considered in this study are simple band-pass filter, Hilbert vibration decomposition, Wavelet transform and proper orthogonal decomposition. Coupled free decay signal obtained from the torsional hammering test on a segmented hull model was processed with four different methods and the derived damping ratios were compared with each other. Discussions also have been made on the pros and cons of the different methodologies.

모달 파라미터 정보를 활용한 PCB 물성 예측에 관한 연구 (A Study on the Prediction of the Mechanical Properties of Printed Circuit Boards Using Modal Parameters)

  • 추정환;정현범;홍상렬;김용갑;김재산
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.421-426
    • /
    • 2017
  • 본 연구에서는 횡등방성 특성을 갖는 인쇄회로기판(PCB)의 물성 예측을 위한 방법을 제안하였다. 등방성 소재와 달리 횡등방성 소재의 물성 취득을 위한 별도의 시험기준은 없으며, PCB와 같이 적층된 형태의 박판 구조물에 대해서는 재료시험 또한 쉽지가 않다. 모달시험을 통해 취득한 모달 파라미터와 상용 소프트웨어인 $OptiStruct^{(R)}$의 치수 최적화 기법을 활용, 시험-해석 간 주파수 차이를 최소화시키는 강성행렬 성분을 도출하여 기계적 물성을 예측하였다. 또한 주파수 별 모드형상을 MAC(Modal Assurance Criteria) 값을 기준으로 비교, 검토하여 예측 물성에 대한 유효성을 확인하였다. 제안된 방법은 향후 PCB를 포함하는 전장제품의 설계검증을 위한 구조해석에 확대 적용될 것으로 기대한다.

차량재하시험에 의한 구조물 동특성 평가에 웨이블렛변환의 이용 (Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test)

  • 박형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2005
  • 교량의 안전진단 과정에서 안전성 평가를 위해 전면교통통제 하에 차량재하시험이 일반적으로 실시된다. 교통통제의 단점을 개선시킨 최근에 제안된 의사정적재하시험에서는 계측된 시간이력 데이터 중 자유진동 부분을 퓨리에변환시켜 고유진동수를 구한다. 이렇게 구해진 고유진동수에는 분석기법에 따른 오차가 포함되며, 자유진동 데이터의 획득에도 다소 애로사항이 따른다. 이 연구에서는 Morlet wavelet를 모웨이블렛으로 하는 웨이블렛변환을 의사정적재하시험으로 계측한 데이터에 적용하여 구한 고유진동수와 감쇠율이 신뢰성을 가지며, 이 분석기법이 의사정적재하시험에 의한 차량재하시험의 자료 분석에 적용 가능하고 타당성이 있음을 보인다.

부분구조물의 축약 모델링을 위한 절점 및 모드의 선정 (Selection of Nodes and Modes for Reduced Modeling of Substructures)

  • 황우석
    • 한국소음진동공학회논문집
    • /
    • 제25권4호
    • /
    • pp.232-237
    • /
    • 2015
  • Complex dynamic systems are composed of several subsystems. Each subsystems affect the dynamics of other subsystems since they are connected to each other in the whole system. Theoretically, we can derive the exact mass and stiffness matrix of a system if we have the natural frequencies and mode shapes of that system. In real situation, the modal parameters for the higher modes are not available and the number of degree of freedom concerned are not so high. This paper shows a simple method to derive the mass and stiffness matrix of a system considering the connecting points of subsystems. Since the accuracy of reconstructed structure depends on the selection of node and mode, the rule for selection of node and mode are derived from the numerical examples.

전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명 (In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions)

  • 하영호;이종원
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.

Complex Modal Testing of Asymmetric Rotors Using Magnetic Exciter Equipped with Hall Sensors

  • Lee, Chong-Won;Kim, Si-Kyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.866-875
    • /
    • 2001
  • The complex modal testing methods developed for asymmetric rotors are briefly discussed and their performances are experimentally evaluated. For the experiments, a laboratory test rotor is excited by using a newly developed, cost effective magnetic exciter equipped with Hall sensors, which measure the excitation forces. It is concluded that the exciter system is characterized by a wide bandwidth and a high resolution for both the excitation and force measurement, and that the one-exciter/two-sensor technique for complex modal testing of asymmetric rotors is superior to the standard two-exciter/two-sensor technique in terms of practicality and realization.

  • PDF