• Title/Summary/Keyword: Modal Test

Search Result 717, Processing Time 0.022 seconds

Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine (자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험)

  • Son, In-Soo;Hur, Sang-Bum;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.

A Method to Determine Optimum Viscoelastic Layer Thickness of Sandwich Plate for Maximum Modal Damping (샌드위치 평판의 모드 감쇠 최대화를 위한 점탄성층 두께 결정법)

  • Nam, Dae-Ho;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.690-696
    • /
    • 2006
  • Thickness of damping layer in sandwich plate needs to be optimized in order to make modal loss factor of the sandwich plate maximum. Since previous studies were interested in noise reductions over high frequency range, the modal properties were derived based on simply supported boundaries. This conventional formula is approximately applicable to other boundary conditions over high frequency range only. The purpose of this study is to propose a method to determine optimum damping layer thickness of sandwich plate for maximum modal damping in low frequency range when the boundary condition is not a simple support. The conventional RKU equation based on simply supported boundary is modified to reflect other boundary conditions and the modified RKU equation is subsequently applied to determine the optimum damping layer thickness for arbitrary conditions. In order to reflect frequency-dependent characteristics of elastic modulus of the damping layer, an iteration method is proposed in determining the modal properties. Test results on sandwich plates for optimum damping layer thickness are compared with predictions by the proposed method and conventional method.

Computation for Deformation Modes of a Flexible Body in Multibody System using Experimental Modal Analysis (실험적 모드해석을 이용한 다물체계내 유연체의 변형보드 계산)

  • Kim, Hyo-Sig;Kim, Sang-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1718-1723
    • /
    • 2003
  • This paper presents a computational method for deformation modes of a flexible body in multibody system from the experimental modal analysis and an efficient method for flexible multibody dynamic analysis by use of the modes. It is difficult to directly use experimental modal parameters in flexible multibody dynamic analysis. The major reasons are that there are many inconsistencies between experimental and analytical modal data and experimental noises are inherent in the experimental data. So two methods, such as, a method for ortho-normalization of experimental modes and the other one for mode expansion, are suggested to gain deformation modes of a flexible body from the experimental modal parameters. Using the virtual work principle, the equation of motion of a flexible body is derived. The effectiveness of the proposed method will be verified in the numerical example of cab vibration of a truck by comparing analysis and test results.

  • PDF

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Torsional Damping Estimation of a Segmented Hull Model with Modal Coupling (모드 연성을 수반하는 분할 모형의 비틀림 감쇠비 추정)

  • Kim, Yooil;Park, Sung-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.482-493
    • /
    • 2016
  • The identification of modal damping of a segmented hull model with torsional response is difficult task due to the coupling of modal response. This is because the 1st and 2nd torsional vibration modes are closely spaced in frequency domain leading to the situation that the modal decomposition is difficult to achieve by simple band-pass filter. Present study applied several different modal decomposition methods to derive the damping ratio of different modes. The modal decomposition methods considered in this study are simple band-pass filter, Hilbert vibration decomposition, Wavelet transform and proper orthogonal decomposition. Coupled free decay signal obtained from the torsional hammering test on a segmented hull model was processed with four different methods and the derived damping ratios were compared with each other. Discussions also have been made on the pros and cons of the different methodologies.

A Study on the Prediction of the Mechanical Properties of Printed Circuit Boards Using Modal Parameters (모달 파라미터 정보를 활용한 PCB 물성 예측에 관한 연구)

  • Choo, Jeong Hwan;Jung, Hyun Bum;Hong, Sang Ryel;Kim, Yong Kap;Kim, Jae San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • In this study, we propose a method for predicting the mechanical properties of the printed circuit board (PCB) that has transversely isotropic characteristics. Unlike the isotropic material, there is no specific test standard for acquisition of the transversely isotropic properties. In addition, common material test methods are not readily applicable to that type of laminated thin plate. Utilizing the natural frequency obtained by a modal test and the sizing optimization technique provided in $OptiStruct^{(R)}$, the mechanical properties of a PCB were derived to minimize the difference between test and analysis results. In addition, the validity of the predicted mechanical properties was confirmed by the MAC (Modal Assurance Criteria) value of each of the compared mode shapes. This proposed approach is expected to be extended to the structural analysis for the design verification of the top product that includes a PCB.

Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test (차량재하시험에 의한 구조물 동특성 평가에 웨이블렛변환의 이용)

  • Park, Hyung-Ghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The vehicle loading test under the strict traffic control is generally carried out as a present practice in an evaluation process of the bearing capacity of a bridge. The quasi-static load test is recently proposed to mitigate the traffic condition of test, and analyze the disturbed acceleration time-history data of free vibration due to the ambient traffic on the bridge by Fourier transform to calculate only the natural frequencies of the bridge. The calculated frequencies have some errors due to the analysis technique as well as the influence of ambient traffic loads, and in addition to it is cumbersome to obtain the free vibration data during a quasi-static load test. In this study, the wavelet transform technique using Morlet wavelet is used to analyze the acceleration data recorded during a quasi-static load test on a bridge and calculate the natural frequencies and the modal damping ratios of the bridge. The study results show that the wavelet transform technique is a reliable and reasonable method to analyze test data and obtain the natural frequencies and the modal damping ratios of a bridge regardless of the data types i.e. free or forced vibrations.

Selection of Nodes and Modes for Reduced Modeling of Substructures (부분구조물의 축약 모델링을 위한 절점 및 모드의 선정)

  • Hwang, Woo Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.232-237
    • /
    • 2015
  • Complex dynamic systems are composed of several subsystems. Each subsystems affect the dynamics of other subsystems since they are connected to each other in the whole system. Theoretically, we can derive the exact mass and stiffness matrix of a system if we have the natural frequencies and mode shapes of that system. In real situation, the modal parameters for the higher modes are not available and the number of degree of freedom concerned are not so high. This paper shows a simple method to derive the mass and stiffness matrix of a system considering the connecting points of subsystems. Since the accuracy of reconstructed structure depends on the selection of node and mode, the rule for selection of node and mode are derived from the numerical examples.

In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions (전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명)

  • Ha, Young-Ho;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.

Complex Modal Testing of Asymmetric Rotors Using Magnetic Exciter Equipped with Hall Sensors

  • Lee, Chong-Won;Kim, Si-Kyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.866-875
    • /
    • 2001
  • The complex modal testing methods developed for asymmetric rotors are briefly discussed and their performances are experimentally evaluated. For the experiments, a laboratory test rotor is excited by using a newly developed, cost effective magnetic exciter equipped with Hall sensors, which measure the excitation forces. It is concluded that the exciter system is characterized by a wide bandwidth and a high resolution for both the excitation and force measurement, and that the one-exciter/two-sensor technique for complex modal testing of asymmetric rotors is superior to the standard two-exciter/two-sensor technique in terms of practicality and realization.

  • PDF