• Title/Summary/Keyword: Modal Domain

Search Result 275, Processing Time 0.025 seconds

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Long Term Monitoring of Dynamic Characteristics of a Jacket-Type Offshore Structure Using Dynamic Tilt Responses and Tidal Effects on Modal Properties (동적 경사 응답을 이용한 재킷식 해양구조물의 장기 동특성 모니터링 및 조류 영향 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Han, Sang-Hun;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.97-108
    • /
    • 2012
  • Dynamic responses were measured using long-term monitoring system for Uldolmok tidal current pilot power plant which is one of jacket-type offshore structures. Among the dynamic quantities, the tilt angle was chosen because the low frequency response components can be precisely measured by dynamic tiltmeter, and the natural frequencies and modal damping ratio were successfully identified using proposed LS-FDD (least squared frequency domain decomposition) method. And the effects of tidal height and tidal current velocity on the variation of natural frequencies and modal damping ratios were investigated in time and frequency domain. Also the non-parametric models were tested to model the relationship between tidal conditions and modal properties such as natural frequencies and damping ratios.

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

Flutter Analysis of Small Aircraft using Full Airframe Dynamic FE Model (전기체 동적 유한요소 모델을 이용한 소형항공기 플러터 해석)

  • Lee, Sang-Wook;Paek, Seung-Kil;Kim, Sung-Chan;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.424-429
    • /
    • 2008
  • Aircraft flutter analysis model consists of dynamic FE model and aerodynamic model. Dynamic FE model is composed of stiffness and mass model, and is used for the prediction of normal mode characteristics of the structure. Since aircraft flutter analysis is normally performed in the modal domain, dynamic FE model shall be constructed to describe the modal characteristics of the structure with sufficient accuracy. In this study, dynamic FE modeling method was described using full airframe FE model and structural and system weight data for aircraft flutter analysis. In addition, full airframe dynamic FE model for composite small aircraft was constituted for normal mode and flutter analysis, and the mass modeling results were compared with the target weight data to validate the mass modeling method proposed. Finally, full airframe flutter analysis of composite small aircraft was performed with the dynamic FE model and the aerodynamic model composed.

  • PDF

Large deformations of a flexural frame under nonlinear P-delta effects

  • Afshar, Dana;Afshar, Majid Amin
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.517-526
    • /
    • 2022
  • In this paper, nonlinear P-delta effects are studied on the seismic performance, and the modal responses of a flexural frame, considering large deformations. Using multiple scales method, the nonlinear differential equations of motion are estimated, and the nonlinear interactions between the frame's degrees of freedom are outcropped. The results of time and frequency domain analyzes of a dynamic model are examined under internal resonance cases, and the linear and nonlinear responses are investigated in each modal cases. Also, changing the modal responses with respect to the amplitude and frequency of the harmonic forces is evaluated. It is shown that the dominant absorption of energy is in the first natural frequency of the frame, in the case of earthquake excitation, and when a harmonic force is applied to the frame, the peaks of the frequency domain responses depending on the frequency of harmonic force are in the first, and second or third natural frequency of the structure.

An Experimental Study on Vibration Control of Concrete Slab (콘크리트슬래브의 진동제어에 관한 실험적 연구)

  • Byun, Keun Joo;Lho, Byeong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.473-485
    • /
    • 1994
  • Vibration control of concrete slab mounting precision instrument is needed to make the working vibration environments in frequency domain as well as time domain. In order to take the vibration control countermeasures, signal and system analyses of the concrete slab are processed. Through them the dynamic responses of concrete slab are obtained in frequency domain, and frequency response functions are acquired by exciting the concrete slab and measuring dynamic responses at various points across its surface. The dynamic characteristics of concrete slab are determined by experimental modal analysis. Based on modal parameters from a set of frequency response function measured, it is possible to investigate the effects of potential design modifications and reduce the dynamic response of concerned point by moving or suppressing an objectionable modal resonance conditions through structural dynamics modification.

  • PDF

Estimation of Modal Parameters for Plastic Film-Covered Greenhouse Arches (비닐하우스 아치구조의 모달계수 산정)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • To a series of vibration records obtained from experimental modal testing using a fixed hammer and roving accelerometers for greenhouse arch structures, modal parameters such as natural frequencies, damping ratios and mode shapes are extracted by applying the two most advanced system identification methods in the frequency-domain up to now, so-called PolyMAX and FDD. The former involves both input and output data, while the latter utilizes only the output data. The possibility of determining the static buckling load, detecting damages, etc., for very slender steel-pipe arches by means of a non-destructive testing method based on vibration measurements is primarily investigated. The extracted modal parameters generally correlated well with those obtained using finite element analysis, demonstrating promising results for further on-going research.

IDENTIFICATION OF MODAL PARAMETERS BY SEQUENTIAL PREDICTION ERROR METHOD (순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정)

  • Lee, Chang-Guen;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.79-84
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the autoregressive and moving average model with auxiliary stochastic input (ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then, the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story building model subject to ground exitations.

  • PDF

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.