• Title/Summary/Keyword: Modal Characteristic

Search Result 231, Processing Time 0.033 seconds

Pulse Propagation Characteristics of Multilayer-Multiconcuctor Transmission Line Network (다층 다도체 선로로 구성된 회로의 펄스전송 특성)

  • 장행종;임영석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.39-47
    • /
    • 1994
  • In this paper, by modeling the Multilayer-Multiconductor Transmission Line(MMTL) with the characteristic parameters-effective dielectric constant, eigen modal voltages, characteristic impedances at each mode, pulse propagation characteristics of MMTL network are simulated. Transmission line modelling is performed in frequency domain, then time domain resposes are obtained by transforming the frequency domain response using fast Fourier transform.

  • PDF

Model Analysis of Plate using by Digital Test System (디지털 실험장치를 이용한 판의 모우드 해석)

  • Hong, Bong-Ki;Bae, Dong-Myung;Bae, Seong-Yoeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

The vibration and noise characteristic analysis of the BLDC Axial-gap type motor by using Finite Element Method (FEM 을 이용한 BLDC Axial-gap type 전동기의 진동과 소음 특성 분석)

  • Lee, Taeck-Jin;Park, Jun-Hong;Lee, Sang-Ho;Hong, Jung-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.943-946
    • /
    • 2007
  • The vibration and noise characteristic of the Axial-gap motor for an air conditioner were analyzed. Experimental Modal Analysis was performed to understand the vibration characteristic of the motor. The noise of motor was measured in a dead room. Finite Element Method was performed to find the vibration characteristic of the motor by using ABAQUS program.

  • PDF

A Study on the Dynamic Characteristic Analysis of the Horizontal Axis Wind Turbine System Blade (수평축 풍력발전기의 Blade 동특성분석에 관한 연구)

  • 손충렬;변효인;박명우;류지윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1394-1399
    • /
    • 2001
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S(Wind Turbine System) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S. the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program (STAR MODAL) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer. For validation of these experiments. the finite element analysis is performed with commercial F.E.M Program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

  • PDF

A Study on Shaft Dynamic Characteristic for G/T 250TON Double-Ended Car-Ferry (G/T 250톤 양방향 차도선 축계의 동특성에 관한 고찰)

  • Kang, Byoung-Mo;Oh, Young-Cheol;Bae, Dong-Gyun;Seo, Kwang-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • The car ferry operating between the mainland and the island plays an important role on transportation of goods and passengers. Therefore, the improvement of efficiency and safety as well as economic factor are importantly considered in the development process of car ferry. Double-ended car ferry is already popularized because of its economic feasibility and convenience for passenger in Europe and developed countries, and the demand is booming in domestic. In this paper, dynamic characteristics of propeller shaft and strength in double-ended car ferry are analyzed using campbell diagram and modal analysis. Based on the analysis of dynamic characteristics, resonant phenomenon and critical speed are stable when occurring the propeller shaft vibration due to forward and reverse propeller shaft working.

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Vibration Characteristics of Non-pneumatic Tire with Honeycomb Spokes (Honeycomb 스포크 구조를 갖는 비 공기압 타이어의 진동 특성)

  • Jo, Hongjun;Lee, Chihoon;Kim, Kwangwon;Kim, Dooman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.174-180
    • /
    • 2013
  • The vibration characteristic of tire is heavily related to the noise and comfort on driving. Therefore, in this paper, we investigate modal charateristic of non-pneumatic tires with Honeycomb spokes. The modal analysis of non-pneumatic tire is investigated for geometric of non-pneumatic tire(NPT) which is designed according to the cell angle of honeycomb cell. Investigation of natural frequencies and mode shapes of non-pneumatic tire are compared regular type NPT with auxetic type NPT. The analysis is based on the finite element method and used ABAQUS program which is able to analyze of non-linear. The material of NPT is used for the Ogden energy model which is model of hyperelastic material. As a result, natural frequencies and mode shapes of non-pneumatic tires with honeycomb spokes are affected by the angle of honeycomb cell.