• Title/Summary/Keyword: Mobile robot recognition

Search Result 227, Processing Time 0.03 seconds

Implementation of Autonomous Mobile Wheeled Robot for Path Correction through Deep Learning Object Recognition (딥러닝 객체인식을 통한 경로보정 자율 주행 로봇의 구현)

  • Lee, Hyeong-il;Kim, Jin-myeong;Lee, Jai-weun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.164-172
    • /
    • 2019
  • In this paper, we implement a wheeled mobile robot that accurately and autonomously finds the optimal route from the starting point to the destination point based on computer vision in a complex indoor environment. We get a number of waypoints from the starting point to get the best route to the target through deep reinforcement learning. However, in the case of autonomous driving, the majority of cases do not reach their destination accurately due to external factors such as surface curvature and foreign objects. Therefore, we propose an algorithm to deepen the waypoints and destinations included in the planned route and then correct the route through the waypoint recognition while driving to reach the planned destination. We built an autonomous wheeled mobile robot controlled by Arduino and equipped with Raspberry Pi and Pycamera and tested the planned route in the indoor environment using the proposed algorithm through real-time linkage with the server in the OSX environment.

Object Recognition Using 3D RFID System (3D REID 시스템을 이용한 사물 인식)

  • Roh Se-gon;Lee Young Hoon;Choi Hyouk Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1027-1038
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) has been suggested as technology that supports object recognition. This paper, introduces the advanced RFID-based recognition using a novel tag which is named a 3D tag. The 3D tag was designed to facilitate object recognition. The proposed RFID system not only detects the existence of an object, but also estimates the orientation and position of the object. These characteristics allow the robot to reduce considerably its dependence on other sensors for object recognition. In this paper, we analyze the characteristics of the 3D tag-based RFID system. In addition, the estimation methods of position and orientation using the system are discussed.

An intelligent sensor controller of mobile robot for object recognition in an indoor known environment (이동로봇을 위한 위치 및 물체인식용 지능형 센서 제어 시스템)

  • Jeong, Tae-Cheol;Park, Jong-Seok;Hyun, Woong-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1479-1484
    • /
    • 2005
  • This paper represents an intelligent sensor controller of mobile robot for object recognition in an indoor hon environment. A range finder sensor module has been developed by using optic PSD (Position Sensitive Detector) sensor way at a low Vice. While PSD sensor is cost effective and light weighting, it has switching noise and white noise. To remove these noises, we propose a heuristic filter. For line-based map building. also we prorosed advanced Hough transformation and navigation algorithm. Some experiments were illustrated for the validity of the developed system.

Building Information-rich Maps for Intuitive Human Interface Using Networked Knowledge Base

  • Ryu, Jae-Kwan;Kanayama, Chie;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1887-1891
    • /
    • 2005
  • Despite significant advances in multimedia transferring technologies in various fields of robotics, it is sometimes quite difficult for the operator to fully understand the context of 3D remote environments from 2D image feedback. Particularly, in the remote control of mobile robots, the recognition of the object associated with the task is very important, because the operator has to control the robot safely in various situations not through trial and error. Therefore, it is necessary to provide the operator with 3D volumetric models of the object and object-related information as well such as locations, shape, size, material properties, and so on. Thus, in this paper, we propose a vision-based human interface system that provides an interactive, information-rich map through network-based information brokering. The system consists of an object recognition part, a 3D map building part, a networked knowledge base part, and a control part of the mobile robot.

  • PDF

Query-based Visual Attention Algorithm for Object Recognition of A Mobile Robot (이동로봇의 물체인식을 위한 질의 기반 시각 집중 알고리즘)

  • Ryu, Gwang-Geun;Lee, Sang-Hoon;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.50-58
    • /
    • 2007
  • In this paper, we propose a query-based visual attention algorithm for effective object finding of a vision-based mobile robot. This algorithm is developed by extending conventional bottom-up visual attention algorithms. In our proposed algorithm various conspicuity maps are merged to make a saliency map, where weighting values are determined by query-dependent object properties. The saliency map is then used to find possible attentive location of queried object. To show the validities of our proposed algorithm, several objects are employed to compare performances of our proposed algorithm with those of conventional bottom-up approaches. Here, as one of exemplar query-dependent object property, color property is used.

An intelligent sensor controller of mobile robot for object recognition in an indoor known environment (이동로봇을 위한 위치 및 물체인식용 지능형 센서 제어 시스템)

  • Jeong, Tae-Cheol;Park, Jong-Seok;Hyun, Woong-Keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.191-194
    • /
    • 2005
  • This paper represents an intelligent sensor controller of mobile robot for object recognition in an indoor known environment. A range finder sensor module has been developed by using optic PSD (Position Sensitive Detector) sensor array at a low price. While PSD sensor is cost effective and light weighting, it has switching noise and while noise. To remove these noises, we propose a heuristic filter. For line-based map building, also we proposed advanced Hough transformation and navigation algorism. Some experiments were illustrated for the validity of the developed system.

  • PDF

An Object Recognition Method Based on Depth Information for an Indoor Mobile Robot (실내 이동로봇을 위한 거리 정보 기반 물체 인식 방법)

  • Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.958-964
    • /
    • 2015
  • In this paper, an object recognition method based on the depth information from the RGB-D camera, Xtion, is proposed for an indoor mobile robot. First, the RANdom SAmple Consensus (RANSAC) algorithm is applied to the point cloud obtained from the RGB-D camera to detect and remove the floor points. Next, the removed point cloud is classified by the k-means clustering method as each object's point cloud, and the normal vector of each point is obtained by using the k-d tree search. The obtained normal vectors are classified by the trained multi-layer perceptron as 18 classes and used as features for object recognition. To distinguish an object from another object, the similarity between them is measured by using Levenshtein distance. To verify the effectiveness and feasibility of the proposed object recognition method, the experiments are carried out with several similar boxes.

Elevator Recognition and Position Estimation based on RGB-D Sensor for Safe Elevator Boarding (이동로봇의 안전한 엘리베이터 탑승을 위한 RGB-D 센서 기반의 엘리베이터 인식 및 위치추정)

  • Jang, Min-Gyung;Jo, Hyun-Jun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.70-76
    • /
    • 2020
  • Multi-floor navigation of a mobile robot requires a technology that allows the robot to safely get on and off the elevator. Therefore, in this study, we propose a method of recognizing the elevator from the current position of the robot and estimating the location of the elevator locally so that the robot can safely get on the elevator regardless of the accumulated position error during autonomous navigation. The proposed method uses a deep learning-based image classifier to identify the elevator from the image information obtained from the RGB-D sensor and extract the boundary points between the elevator and the surrounding wall from the point cloud. This enables the robot to estimate the reliable position in real time and boarding direction for general elevators. Various experiments exhibit the effectiveness and accuracy of the proposed method.

Door Traversing for A Mobile Robot in Complex Environment (복잡한 환경에서 자율이동 로봇의 문 통과방법)

  • Kim Young-Joong;Lim Myo-Teak;Seo Min-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.447-452
    • /
    • 2005
  • This paper presents a method that a mobile robot finds location of doors in complex environments and safely traverses the door PCA(Principal Component Analysis) algorithm using the vision information is used for a robot to find the location of door, PCA is a useful statistical technique that has found application in fields such as face recognition and image compression, and is a common technique for finding pattern in data of high dimension. Fuzzy controller using a sonar data is used for a robot to avoid obstacles and traverse the doors.

A Study on Autonomous Driving Mobile Robot by using Intelligent Algorithm

  • Seo, Hyun-Jae;Kim, Hyo-Jae;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.543-547
    • /
    • 2005
  • In this paper, we designed a intelligent autonomous driving robot by using Fuzzy algorithm. The object of designed robot is recognition of obstacle, avoidance of obstacle and safe arrival. We append a suspension system to auxiliary wheel for improvement in stability and movement. The designed robot can arrive at destination where is wanted to go by the old and the weak and the handicapped at indoor hospital and building.

  • PDF