• Title/Summary/Keyword: Mobile mapping system

Search Result 236, Processing Time 0.035 seconds

Gradation Image Processing for Text Recognition in Road Signs Using Image Division and Merging

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • This paper proposes a gradation image processing method for the development of a Road Sign Recognition Platform (RReP), which aims to facilitate the rapid and accurate management and surveying of approximately 160,000 road signs installed along the highways, national roadways, and local roads in the cities, districts (gun), and provinces (do) of Korea. RReP is based on GPS(Global Positioning System), IMU(Inertial Measurement Unit), INS(Inertial Navigation System), DMI(Distance Measurement Instrument), and lasers, and uses an imagery information collection/classification module to allow the automatic recognition of signs, the collection of shapes, pole locations, and sign-type data, and the creation of road sign registers, by extracting basic data related to the shape and sign content, and automated database design. Image division and merging, which were applied in this study, produce superior results compared with local binarization method in terms of speed. At the results, larger texts area were found in images, the accuracy of text recognition was improved when images had been gradated. Multi-threshold values of natural scene images are used to improve the extraction rate of texts and figures based on pattern recognition.

Simple Pyramid RAM-Based Neural Network Architecture for Localization of Swarm Robots

  • Nurmaini, Siti;Zarkasi, Ahmad
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.370-388
    • /
    • 2015
  • The localization of multi-agents, such as people, animals, or robots, is a requirement to accomplish several tasks. Especially in the case of multi-robotic applications, localization is the process for determining the positions of robots and targets in an unknown environment. Many sensors like GPS, lasers, and cameras are utilized in the localization process. However, these sensors produce a large amount of computational resources to process complex algorithms, because the process requires environmental mapping. Currently, combination multi-robots or swarm robots and sensor networks, as mobile sensor nodes have been widely available in indoor and outdoor environments. They allow for a type of efficient global localization that demands a relatively low amount of computational resources and for the independence of specific environmental features. However, the inherent instability in the wireless signal does not allow for it to be directly used for very accurate position estimations and making difficulty associated with conducting the localization processes of swarm robotics system. Furthermore, these swarm systems are usually highly decentralized, which makes it hard to synthesize and access global maps, it can be decrease its flexibility. In this paper, a simple pyramid RAM-based Neural Network architecture is proposed to improve the localization process of mobile sensor nodes in indoor environments. Our approach uses the capabilities of learning and generalization to reduce the effect of incorrect information and increases the accuracy of the agent's position. The results show that by using simple pyramid RAM-base Neural Network approach, produces low computational resources, a fast response for processing every changing in environmental situation and mobile sensor nodes have the ability to finish several tasks especially in localization processes in real time.

A Study for Factors Influencing the Usage Increase and Decrease of Mobile Data Service: Based on The Two Factor Theory (모바일 데이터 서비스 사용량 증감에 영향을 미치는 요인들에 관한 연구: 이요인 이론(Two Factor Theory)을 바탕으로)

  • Lee, Sang-Hoon;Kim, Il-Kyung;Lee, Ho-Geun;Park, Hyun-Jee
    • Asia pacific journal of information systems
    • /
    • v.17 no.2
    • /
    • pp.97-122
    • /
    • 2007
  • Conventional networking and telecommunications infrastructure characterized by wires, fixed location, and inflexibility is giving way to mobile technologies. Numerous research reports point to the ultimate domination of wireless communication. With the increasing prevalence of advanced cell-phones, various mobile data services (hereafter MDS) are gaining popularity. Although cellular networks were originally introduced for voice communications, statistics indicate that data services are replacing the matured voice service as the growth engine for telecom service providers. For example, SK Telecom, the Korea's largest mobile service provider, reported that 25.6% of revenue and 28.5% of profit came from MDS in 2006 and the share is growing. Statistics also indicate that, in 2006, the average revenue per user (ARPU) for voice didn't change but MDS grew seven percents from the previous year, further highlighting its growth potential. MDS is defined "as an assortment of digital data services that can be accessed using a mobile device over a wide geographic area." A variety of MDS have been deployed, with a few reaching the status of killer applications. Many of them need to access the Internet through the cellular-phone infrastructure. In the past, when the cellular network didn't have acceptable bandwidth for data services, SMS (short messaging service) dominated MDS. Now, Internet-ready, next-generation cell-phones are driving rich digital data services into the fabric of everyday life, These include news on various topics, Internet search, mapping and location-based information, mobile banking and gaming, downloading (i.e., screen savers), multimedia streaming, and various communication services (i.e., email, short messaging, messenger, and chaffing). The huge economic stake MDS has on its stakeholders warrants focused research to understand associated dynamics behind its adoption. Lyytinen and Yoo(2002) pointed out the limitation of traditional adoption models in explaining the rapid diffusion of innovations such as P2P or mobile services. Also, despite the increasing popularity of MDS, unexpected drop in its usage is observed among some people. Intrigued by these observations, an exploratory study was conducted to examine decision factors of MDS usage. Data analysis revealed that the increase and decrease of MDS use was influenced by different forces. The findings of the exploratory study triggered our confirmatory research effort to validate the uni-directionality of studied factors in affecting MDS usage. This differs from extant studies of IS/IT adoption that are largely grounded on the assumption of bi-directionality of explanatory variables in determining the level of dependent variables (i.e., user satisfaction, service usage). The research goal is, therefore, to examine if increase and decrease in the usage of MDS are explained by two separate groups of variables pertaining to information quality and system quality. For this, we investigate following research questions: (1) Does the information quality of MDS increase service usage?; (2) Does the system quality of MDS decrease service usage?; and (3) Does user motivation for subscribing MDS moderate the effect information and system quality have on service usage? The research questions and subsequent analysis are grounded on the two factor theory pioneered by Hertzberg et al(1959). To answer the research questions, in the first, an exploratory study based on 378 survey responses was conducted to learn about important decision factors of MDS usage. It revealed discrepancy between the influencing forces of usage increase and those of usage decrease. Based on the findings from the exploratory study and the two-factor theory, we postulated information quality as the motivator and system quality as the de-motivator (or hygiene) of MDS. Then, a confirmative study was undertaken on their respective role in encouraging and discouraging the usage of mobile data service.

Extraction of Road Information Based on High Resolution UAV Image Processing for Autonomous Driving Support (자율주행 지원을 위한 고해상도 무인항공 영상처리 기반의 도로정보 추출)

  • Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.355-360
    • /
    • 2017
  • Recently, with the development of autonomous vehicle technology, the importance of precise road maps is increasing. A precise road map is a digital map with lane information, regulations, safety information, and various road facilities. Conventional precise road maps have been tested and developed based on the mobile mapping system (MMS). But they have not been activated due to high introduction costs. However, in the case of unmanned aerial vehicles (UAVs), the application field is continuously increasing. This study tries to extract information through classification of high-resolution UAV images for autonomous driving. Autonomous vehicle test roads were selected as study sites, and high-resolution orthoimages were produced using UAVs. In addition, the utilization of high-resolution orthoimages has been proposed by effectively extracting data for precise road map construction, such as road lines, guards, and machines through image classification. If additional experimentation and verification are performed, the field of UAV image use will be expanded, providing the data to automobile manufacturers and related public and private organizations, and venture companies will contribute to the development of domestic autonomous vehicle technology.

A Study on Building the HD Map Prototype Based on Web GIS for the Generation of the Precise Road Maps (정밀도로지도 제작을 위한 Web GIS 기반 HD Map 프로토타입 구축 연구)

  • KWON, Yong-Ha;CHOUNG, Yun-Jae;CHO, Hyun-Ji;GU, Bon-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.102-116
    • /
    • 2021
  • For the safe operation of autonomous vehicles, the representative technology of the 4th industrial revolution era, a combination of various technologies such as sensor technology, software technology and car technology is required. An autonomous vehicle is a vehicle that recognizes current location and situation by using the various sensors, and makes its own decisions without depending on the driver. Perfect recognition technology is required for fully autonomous driving. Since the precise road maps provide various road information including lanes, stop lines, traffic lights and crosswalks, it is possible to minimize the cognitive errors that occur in autonomous vehicles by using the precise road maps with location information of the road facilities. In this study, the definition, necessity and technical trends of the precise road map have been analyzed, and the HD(High Definition) map prototype based on the web GIS has been built in the autonomous driving-specialized areas of Daegu Metropolitan City(Suseong Medical District, about 24km), the Happy City of Sejong Special Self-Governing City(about 33km), and the FMTC(Future Mobility Technical Center) PG(Proving Ground) of Seoul National University Siheung Campus using the MMS(Mobile Mapping System) surveying results given by the National Geographic Information Institute. In future research, the built-in precise road map service will be installed in the autonomous vehicles and control systems to verify the real-time locations and its location correction algorithm.

Automatic Construction of Deep Learning Training Data for High-Definition Road Maps Using Mobile Mapping System (정밀도로지도 제작을 위한 모바일매핑시스템 기반 딥러닝 학습데이터의 자동 구축)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Currently, the process of constructing a high-definition road map has a high proportion of manual labor, so there are limitations in construction time and cost. Research to automate map production with high-definition road maps using artificial intelligence is being actively conducted, but since the construction of training data for the map construction is also done manually, there is a need to automatically build training data. Therefore, in this study, after converting to images using point clouds acquired by a mobile mapping system, the road marking areas were extracted through image reclassification and overlap analysis using thresholds. Then, a methodology was proposed to automatically construct training data for deep learning data for the high-definition road map through the classification of the polygon types in the extracted regions. As a result of training 2,764 lane data constructed through the proposed methodology on a deep learning-based PointNet model, the training accuracy was 99.977%, and as a result of predicting the lanes of three color types using the trained model, the accuracy was 99.566%. Therefore, it was found that the methodology proposed in this study can efficiently produce training data for high-definition road maps, and it is believed that the map production process of road markings can also be automated.

Inspection of Calandria Reactor Area of Wolsung NPP using Thermal Infrared and CCD Images (CCD와 적외선 열영상의 다중영상을 이용한 월성원자력발전소의 칼란드리아 전면부 점검)

  • Cho, Jai-Wan;Choi, Young-Soo;Kim, Chang-Hoi;Seo, Yong-Chil;Kim, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.711-714
    • /
    • 2002
  • Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and. resolution. To compensate the poor Image quality problems associated with the thermal infrared camera, the technique of superimposing thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and cod camera In parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  • PDF

A Generation Method of Spatially Encoded Video Data for Geographic Information Systems

  • Joo, In-Hak;Hwang, Tae-Hyun;Choi, Kyoung-Ho;Jang, Byung-Tae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.801-803
    • /
    • 2003
  • In this paper, we present a method for generating and providing spatially encoded video data that can be effectively used by GIS applications. We collect the video data by a mobile mapping system called 4S-Van that is equipped by GPS, INS, CCD camera, and DVR system. The information about spatial object appearing in video, such as occupied region in each frame, attribute value, and geo-coordinate, are generated and encoded. We suggest methods that can generate such data for each frame in semi-automatic manner. We adopt standard MPEG-7 metadata format for representation of the spatially encoded video data to be generally used by GIS application. The spatial and attribute information encoded to each video frame can make visual browsing between map and video possible. The generated video data can be provided and applied to various GIS applications where location and visual data are both important.

  • PDF

The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition (전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구)

  • Jung, Hyun-Chul;Kim, Nam-Jin;Choi, Lee-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • After the internet era, we are moving to the ubiquitous society. Nowadays the people are interested in the multimodal interaction technology, which enables audience to naturally interact with the computing environment at the exhibitions such as gallery, museum, and park. Also, there are other attempts to provide additional service based on the location information of the audience, or to improve and deploy interaction between subjects and audience by analyzing the using pattern of the people. In order to provide multimodal interaction service to the audience at the exhibition, it is important to distinguish the individuals and trace their location and route. For the location tracking on the outside, GPS is widely used nowadays. GPS is able to get the real time location of the subjects moving fast, so this is one of the important technologies in the field requiring location tracking service. However, as GPS uses the location tracking method using satellites, the service cannot be used on the inside, because it cannot catch the satellite signal. For this reason, the studies about inside location tracking are going on using very short range communication service such as ZigBee, UWB, RFID, as well as using mobile communication network and wireless lan service. However these technologies have shortcomings in that the audience needs to use additional sensor device and it becomes difficult and expensive as the density of the target area gets higher. In addition, the usual exhibition environment has many obstacles for the network, which makes the performance of the system to fall. Above all these things, the biggest problem is that the interaction method using the devices based on the old technologies cannot provide natural service to the users. Plus the system uses sensor recognition method, so multiple users should equip the devices. Therefore, there is the limitation in the number of the users that can use the system simultaneously. In order to make up for these shortcomings, in this study we suggest a technology that gets the exact location information of the users through the location mapping technology using Wi-Fi and 3d camera of the smartphones. We applied the signal amplitude of access point using wireless lan, to develop inside location tracking system with lower price. AP is cheaper than other devices used in other tracking techniques, and by installing the software to the user's mobile device it can be directly used as the tracking system device. We used the Microsoft Kinect sensor for the 3D Camera. Kinect is equippedwith the function discriminating the depth and human information inside the shooting area. Therefore it is appropriate to extract user's body, vector, and acceleration information with low price. We confirm the location of the audience using the cell ID obtained from the Wi-Fi signal. By using smartphones as the basic device for the location service, we solve the problems of additional tagging device and provide environment that multiple users can get the interaction service simultaneously. 3d cameras located at each cell areas get the exact location and status information of the users. The 3d cameras are connected to the Camera Client, calculate the mapping information aligned to each cells, get the exact information of the users, and get the status and pattern information of the audience. The location mapping technique of Camera Client decreases the error rate that occurs on the inside location service, increases accuracy of individual discrimination in the area through the individual discrimination based on body information, and establishes the foundation of the multimodal interaction technology at the exhibition. Calculated data and information enables the users to get the appropriate interaction service through the main server.

A Study of Location Based Services Using Location Data Index Techniques (위치데이터인덱스 기법을 적용한 위치기반서버스에 관한 연구)

  • Park Chang-Hee;Kim Jang-Hyung;Kang Jin-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.595-605
    • /
    • 2006
  • In this thesis, GPS and the electronic mapping were used to realize such a system by recognizing license plate numbers and identifying the location of objects that move at synchronous times with simulated movement in the electronic map. As well, throughout the study, a camera attached to a PDA, one of the mobile devices, automatically recognized and confirmed acquired license plate numbers from the front and back of each car. Using this mobile technique in a wireless network, searches for specific plate numbers and information about the location of the car is transmitted to a remote server. The use of such a GPS-based system allows for the measurement of topography and the effective acquisition of a car's location. The information is then transmitted to a central controlling center and stored as text to be reproduced later in the form of diagrams. Getting positional information through GPS and using image-processing with a PDA makes it possible to estimate the correct information of a car's location and to transmit the specific information of the car to a control center simultaneously, so that the center will get information such as type of the car, possibility of the defects that a car might have, and possibly to offer help with those functions. Such information can establish a mobile system that can recognize and accurately trace the location of cars.

  • PDF