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Abstract 
The localization of multi-agents, such as people, animals, or robots, is a requirement to accomplish several 
tasks. Especially in the case of multi-robotic applications, localization is the process for determining the 
positions of robots and targets in an unknown environment. Many sensors like GPS, lasers, and cameras are 
utilized in the localization process. However, these sensors produce a large amount of computational 
resources to process complex algorithms, because the process requires environmental mapping. Currently, 
combination multi-robots or swarm robots and sensor networks, as mobile sensor nodes have been widely 
available in indoor and outdoor environments. They allow for a type of efficient global localization that 
demands a relatively low amount of computational resources and for the independence of specific 
environmental features. However, the inherent instability in the wireless signal does not allow for it to be 
directly used for very accurate position estimations and making difficulty associated with conducting the 
localization processes of swarm robotics system. Furthermore, these swarm systems are usually highly 
decentralized, which makes it hard to synthesize and access global maps, it can be decrease its flexibility. In 
this paper, a simple pyramid RAM-based Neural Network architecture is proposed to improve the 
localization process of mobile sensor nodes in indoor environments. Our approach uses the capabilities of 
learning and generalization to reduce the effect of incorrect information and increases the accuracy of the 
agent’s position. The results show that by using simple pyramid RAM-base Neural Network approach, 
produces low computational resources, a fast response for processing every changing in environmental 
situation and mobile sensor nodes have the ability to finish several tasks especially in localization processes in 
real time.  
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1. Introduction 

Robots can be used for exploration in an unknown environment, especially in dangerous ones. It is 
common to employ an advanced robot for such tasks. However, the robot is susceptible for solving task 
in such environment because a failure of the robot means the failure of the entire mission. An emerging 
approach to robotics research is to employ a group of simple robots named swarm robots, which can 
collectively achieve a demanding task. The failure of one robot should not affect the overall mission. 
When swarm robots work in unknown environment, localization considers the most important 
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performance aspect. Localization is the process of determining the positions of robots or targets in their 
entire environment. Without determining the robot’s position and orientation within an environment, 
no trajectory can be generated and swarm robots cannot achieve a target [1]. 

In swarm robots research with low cost processor and simple sensors is suffice to initially localization, 
particularly in a highly dynamic environment. The imprecise environmental perception of sensors is a 
result of the fact that many sensors provide a relatively accurate measurement of the distance from an 
object, but they provide poor information about its exact location. To overcome imprecision detection 
in sensor system is a difficult problem, due to it need large computational resources. Otherwise, it can 
produce inaccurate measurement [2].  

Correctly estimating about swarm location is a prior work to accomplish several tasks in swarm 
robots. A single sensor, like GPS, provides global position estimations, but it is restricted to outdoor 
environments. It has an inherent imprecision of a few meters while more accurate estimations are 
obtained by using sensor fusion between the laser and camera [3,4]. Especially, in an indoor 
environment, laser and camera sensors can be used for conducting pose estimation [5,6]. However, they 
require hard computation to process complex algorithms and a limited field of view, which makes the 
localization task harder. Another possibility is to use an odometer sensor, which provides useful 
information in some cases [7,8]. Nevertheless, when odometer sensor is used in real systems, it has an 
incremental error that usually invalidates.  

Advances in sensor technologies have created low-cost, low-power, multi-functional miniature 
sensor devices. These devices make up hundreds or thousands of ad hoc tiny sensor nodes spread across 
a geographical area [9]. A sensor network (SN) can provide access to information anytime and 
anywhere by collecting, processing, analyzing, and disseminating data. SNs are widely available in 
indoor and outdoor environments and allow for efficient global localization. They require relatively low 
computing resources.  

Other advantages of this approach are scalability, robustness, and independence of specific features in 
the environment [9]. Recently, the concept of mobility was introduced to SNs by dispatching sensor 
nodes conducting various missions with multi-robots, named swarm robots. Nevertheless, the inherent 
instability in the wireless signal does not allow for it to be directly used for accurate position estimations 
of swarm robots.  

One machine learning technique that could reduce the instability of the signals of the SNs is the 
artificial neural network (ANN), given its capability of learning from examples, and its ability to 
generalize and adapt to outputs. Many applications utilize this technique, but in the learning process 
they require approximation, prediction, classification, and implementation of the network operational 
use of the multiplier unit [10]. It can be problematic for simple swarm robots’ applications with a small 
memory, due to the large size of resources because training the generalized data requires both the 
forward propagation phase and backward propagation phase [11]. 

A weightless neural network (WNN) is a type of ANN but it does not store knowledge in ANN 
multiplier unit connections but in the Random Access Memory (RAM) inside the neurons. These 
neurons operate in binary input values and use the RAM as lookup tables. The synapses of each neuron 
collect a vector of bits from the inputs array of the RAM address. Training is carried out in one shot and 
basically consists of storing the desired output in the address associated with the input vector of the 
neuron [12].  
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The WNN is very effective as pattern recognition tools, offering fast training and testing, in addition 
to being easy to implement [12,13]. However, if the network input is too large, the memory size 
becomes prohibitive, since it must be equal to 2n, where n is the input size. An n input RAM node has 
2n memory locations, addressed by the n-bit string a = (a1 a2 .... an). A binary signal x = (x1 x2 ....xn) on 
the input lines will access only one of these locations resulting in y = C [x] [11,12]. The challenging task 
would be to design an algorithm to fill the RAM during training for obtaining the best possible 
generalization, especially in an application with a small memory resource.   

 
 

2. Proposed Method 

2.1 RAM-Based Neural Network Architecture  
 
ANNs have been successfully applied to many fields. However, their application in real world 

situations still faces many challenges. One of these challenges is that training requires the repeated 
presentation of training data and often results in a long amount of learning time [14]. Finding the best 
architectural configuration for ANNs is difficult even when the ideal number of output classes is 
known. The problem is increased exponentially when there are multiple output sets [14].  

WNNs can operate on more simplistic hardware. The key difference between WNNs and ANNs 
modify stored look-up tables instead of complex weightings. The architecture of neurons and the 
interconnection of layers are the important elements of WNNs. However, this architecture can go one 
step higher because the network can consist of a multiplicity of neurons. One of the biggest 
improvements in WNNs, is use architecture as small as possible to solve complex problems. 

 A single layer of RAM-nodes uses most of the architecture for a WNN. A system formed into various 
RAM-discriminators is called WiSARD [15]. Each RAM-discriminator is trained in a particular class of 
patterns, and classification by the multi-discriminator system is performed in the following way: Kan 
and Aleksander [16] introduced a multilayer or pyramid architecture, which is formed by new nodes 
called probabilistic logic nodes (PLNs). It stores a 2-bit value each of all of these memory locations: “0,” 
“1,” and “u” randomly, before the learning phase. However, pyramid architecture is saturated very 
easily and it fails to learn new patterns before the training set has been completely presented [13].  

In [17], the author has proposed a natural extension of the PLN—the m-state PLN (MPLN). In this 
new model, a wider discrete range of values can be stored at each s-memory location. However, new 
information is acquired after different steps, as incorrect information is only thrown away after a 
certain number of errors [13]. An evolution of this model is proposed by Taylor [18] called a 
probabilistic RAM (pRAM). In this architecture values belonging to [0, 1] can be stored in the memory 
locations with continuous probability. Given a certain input, the contents of memory locations 
represented the probability that the value of 1 is produced as an output.  

The Goal Seeking Neuron (GSN) has been developed with the aim of preserving the corruption and 
error information in the PLN [19]. GSN architecture can input, store, and output 0’s, 1’s, and u’s. Two 
different locations are addressed in a GNS if the input contains a u. GRAMs were introduced by 
Aleksander [20] at the node level by including a spreading phase in the learning algorithm just after a 
training pattern is stored, in order to increase the generalization of WNNs. However, there is no 
generalization property in the RAM neurons. There are several extensions of RAM neurons in which 
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they try to smooth the non-generalization problems of RAM neurons, such as PLN, GSN, and G-RAM 
[21].  

The implementation of a WNN is limited by the amount of variable memory since RAM neurons are 
assembled as a binary vector, addressed by the inputs and is stored in the system’s memory [11,12]. 
Therefore, the architecture must overcome the memory problem when WNNs is implemented. RAM-
based Neural Network architecture on hardware implementation produce fast testing and training, thus 
it is ideally suited for mobile robots. Some of the research that has been carried indicates that this 
technique is successful. Hannan et al. [22] have presented that a RAM-based Neural Network is 
considered as the heart of the controller and is implemented on FPGAs for collision free robot 
navigation. Botelho et al. [23], have proposed a simple RAM-based network that has been developed to 
control a mobile robot and they used a high-speed neural network to detect obstacles and navigation 
control. Yao et al. [24] have described a RAM-based Neural Network for a mobile robot using a simple 
microprocessor system. Their method allows for the robot to detect and avoid obstacles in real time. 
McElroy and Howells [25] have introduced a technique for the identification of rooms or locations in 
the absence of complex and succinct information for mobile robot localization. Coraggio and De 
Gregorio [26] have described a hybrid WiSARD and NSP approach for solving a robot global 
localization problem in an office-like environment. The global localization problem deals with the 
estimation of the robot position when its initial pose is unknown. De Gregorio [27] has presented the 
possible use of virtual neural sensors that is implemented by means of weightless neural systems as 
active or reactive sensors in robotic vision. 

 
2.2 Proposed Simple Architecture 

 
A RAM-based Neural Network (RAM-bNN) is composed of a class of neural networks characterized 

by their potential for hardware realization. It has fast processing during the training phase. The memory 
capacity required is not too large, because it is only used to store training data. However, if the size of 
the training data sets increases and the memory storage is not big enough, the network can suffer from 
saturation. In order to avoid this problem, we are proposing pyramid architecture for increasing the 
process training and avoiding the memory saturation.  

This research is focused on the development of efficient RAM-bNN architecture based on a simple 
microprocessor system. The proposed architecture is shown in Fig. 1. The input data in the form of a bit 
vector coming from sensor arrays (s1,…, sn). The groups of sensor arrays are connected to a 
discriminator. In this research, sensor values were distributed to each neuron in the input layer. The 
training process of RAM-bNN does not use weight matrices, it only indicates that the results of the 
outputs are correct or incorrect. Training only determines the value of a single distance parameter, such 
as being far or near. 

Each discriminator is trained as a sample of its labeled class for specific classification. Several output 
classes are required to construct the appropriate number of layers. The architecture with neuron data 
processing is divided into two layers for learning and recalling. Output pattern from decision layer to 
determine the winning class.  

The number of layers depends upon the input vector size and the memory size. The network is built 
of a group of layers, whereby each of these layers has a set number of neurons. The number of neurons 
in each layer is defined by the size of the network input.  
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Fig. 1. Proposed simple pyramid RAM-Based Neural Networks architecture. 

 
The proposed pyramid architecture is comprised of layers of input and output modules. All neuron 

connections are chosen at random and each sub-network is determined by the system. There are two 
working modes of RAM-bNN architecture that are known as learning and recalling. For the initial 
condition, each address location is signed as a memory register and all registers in the memory location 
are set to zero. This zero is interpreted as a u value. During the learning mode, the counter register may 
become positive or negative. A positive value is interpreted as 1 and a negative value is interpreted as 0, 
as far as that memory location value is concerned. If the desired output is 1, the address location is 
incremented. Otherwise, the address location is decremented.  

This technique involves calculating the address vectors for the next layer, moving towards the output. 
On the previous layers from each connecting line to the next layer, the input vector to each memory 
location is constructed by invoking the recalling mode. During training, the contents of any memory 
location may be zero, due to undefined values (u), in that vector. These positions are filled with the 
desired output value for that pyramid before applying the vector to the next layer. The newly con-
structed address vector is then applied to the memory inputs and the memory location contents are 
again modified. This procedure is continued until the output is reached. In the recalling mode, the 
content of each addressed memory location, starting from the input layer, is interpreted as 0 (negative), 
1 (positive), or as u (undefined). The output of each location memory may move an undefined output 
forward.  

 
2.3 Memory Optimization   

Z1

S1
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S4

S5

Z2 Z3
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Fig. 2. RAM discriminator classification. 
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In this research, every mobile robot uses five sensors for environmental detection. Five sensors can be 
formed into four groups of RAM discriminator patterns, which are called RAM discriminator 
classifications, as shown in Fig. 2. Each pattern composed of memory locations or neurons addressed by 
the RAM address line in the discriminator. The initial input patterns of the RAM discriminator 
represents the classes that have been determined based on the positions of the sensors.  

For data optimization, the memory only uses 4-bits of the MSB. Each RAM discriminator has 2 RAM 
nodes, each RAM node has 4-bits of a word or x = 4 and then the total input vector is 8-bits or n = 8. 
Therefore, each RAM discriminator can receive 32-bits of input patterns. Based on Fig. 2, the input for 
RAM discriminator Z1 is a combination of data from S1 and S2 or Z1 = S1 + S2. This means that the 
sensor data, S1 (4-bits) is added with sensor S2 (4-bits). Then, the result is stored in the RAM 
discriminator. This process is repeated for other discriminators Z2, Z3, and Z4. 

 

 
(a)                                                                                              (b) 

Fig. 3. Process of memory optimization in proposed architecture. (a) RAM discriminator and (b) multi-
layer processing. 

 
In this research, multi-layer processing is used with two layers, as shown in Fig. 3. Layer-1 is a RAM 

discriminator layer, which consists of four parts of RAM discriminators, Z1, Z2, Z3, and Z4, with 
addresses 60h, 61h, 62h, and 63h, respectively. Layer-2 has three discriminators, Z5, Z6, and Z7, with 
addresses 51h, 52h, and 53h, respectively. These discriminators are classes for determining the result of 
the desired pattern or winning class in multilayer processing architecture. 

These classes are representatives of the three final output patterns of different address. Each output 
pattern from the discriminator classes will be compared to a threshold value (threshold). The RAM 
discriminator on Layer-1 receives the minimum data is 00100b and the maximum data is 10000b. These 
values as the input pattern are obtained from RAM classification. The RAM discriminator Z1 and Z2 
can directly determine the final outcome or winning class on the condition of there being only one 
discriminator that has a minimum value (minority decision). The final results are utilized for 
determining the direction of the movement of the swarm robots and target localization.  

 
 

3. Research Method 

3.1 Swarm Robots Design 
 
The implementation of pyramid RAM-bNN architecture in swarm robots is shown in Fig. 4. They 
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contain two microcontrollers, which implies the implementation of a robust communication 
mechanism between modules. For this platform, the architecture can be conceptually seen as the driver 
module, processing module, and the communication module. All modules are connected to each other 
via an 8-bits of data. A general purpose high-performance controller for decision-making is connected 
to the parallel bus. There are five infrared sensors located at the front, left, and right side of the mobile 
robot for navigating. Two gas sensors, one humidity sensor, and one temperature sensor are employed 
for environmental monitoring and target localization. 

 

 

 
Fig. 4. Swarm robots implementation with communication system. 

 
Swarm robots can communicate each other as mobile sensor node uses X-Bee-Pro OEM/ZigBee. The 

radio frequency transceiver and receiver provides full duplex communication at frequency IEEE 
802.15.4 2.4 GHz. ZigBee is targeted at radio-frequency applications that require a low data rate, long 
battery life, and secure networking. ZigBee is a low-cost, low-power, wireless mesh networking 
standard. The low cost allows the technology to be widely deployed in wireless control and monitoring 
applications. The hardware and software development are summarized. Our research required two 
modules of X-Bee for communicating between the web server, static nodes, and swarm robots as mobile 
nodes. 

 
3.2 Input Data 

 
The idea of this research is to apply RAM technology for applications with a limited number of 

inputs. In this way, a pyramid RAM device is utilized for addressing all possible input vectors. This is 
done so as to avoid excessively large tables. For example, 16 input bits correspond to a table with 216 = 
65,536 entries (64K). Doubling the number of input bits to 32 requires a table with 232 entries, or 4 
Gigabytes entries. This situation must be avoided in our work, due to the fact that swarm robots only 
use a simple microcontroller with small memory resources. 

As stated previously, the sample problem domain was data that we gathered from the infrared 
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sensors attached to a robot and initial data collect from infrared sensors, as shown in Table 1. Sensor 
data must be encoded into a binary value for determining the data threshold. Sensor 1 (S1), sensor 3 
(S3), and sensor 5 (S5) have the same value as the sensor distance range of about 2.5 cm. The closest 
distance is 10 cm or 80h or 1000 0000b and the farthest distance is 12.5 cm or 70h or 0111 0000b. 
Sensor 2 (S2) and sensor 4 (S4) have the same value as the sensor distance range of 7.5 cm. The 
closest distance is 10 cm or 80h or 1000 0000b and the farthest distance is 17.5 cm or 50h or 0101 
0000b.  

 
Table 1. Example data from the sensors 

Sensor Binary data Distance data Range of sensor 
S1 (0111 0000) to (1000 0000) (12.5 cm) to (10.0 cm) 2.5 cm 

S2 
(0101 0000) to (0110 0000) (17.5 cm) to (15.5 cm) 2 cm 
(0110 0000) to (0111 0000) (15.5 cm) to (12.5 cm) 3 cm 
(0111 0000) to (1000 0000) (12.5 cm) to (10.0 cm) 2.5 cm 

S3 (0111 0000) to (1000 0000) (12.5 cm) to (10.0 cm) 2.5 cm 

S4 
(0101 0000) to (0110 0000) (17.5 cm) to (15.5 cm) 2 cm 
(0110 0000) to (0111 0000) (15.5 cm) to (12.5 cm) 3 cm 
(0111 0000) to (1000 0000) (12.5 cm) to (10.0 cm) 2.5 cm 

S5 (0111 0000) to (1000 0000) (12.5 cm) to (10.0 cm) 2.5 cm 

 
Once all of the input data has been generated, it is placed into a RAM node, as shown in Table 2. 

Because 8-bits of data produce high computational cost. Therefore, we only used 4-bits of MSB data. 
Every 1-bit of data equals to one change of environmental pattern, all inputs are 15 patterns of the 
networks. 

In this work, the input data from five infrared sensors, such as S1, S2, S3, S4, and S5, are stored in the 
RAM address at 40h, 41h, 42h, 43h, and 44h, respectively, as a RAM node address for each neuron. The 
range area of sensors is divided into two groups, the first group area is the left sensor, which is S1; the 
front sensor is S3; and the right sensor is S4. For this group the farthest distance from the sensor to the 
obstacle is about 14 cm or 0111b and the nearest distance from the sensor to the obstacle is about 10 cm 
or 1000b. The second group area is the left-front sensor S2 and the right-front sensor is S4. For this 
group the farthest distance from the sensor to the obstacle is about 22 cm or 0100b and the nearest 
distance from the sensor to the obstacle is about 10 cm or 1000b. That sensor values are a function of 
the activation value or threshold for RAM-bNN. If the sensor value does not correspond with any 
activation value, it is indicates there are no obstacles and the input neuron to the RAM node is 0 or 

0000b. 
 

3.3 Environmental Classifications 
 
The sensors database, which represents a variety of possible situations in the environment, should be 

built beforehand to classify the entire environment into one of the prototype patterns. The appropriate 
RAM node contained in the proposed architecture trains every prototype environmental pattern. To 
identify the environmental patterns, five infrared sensors are used in swarm robots. The detection range 
of infrared sensors is set at 10–30 cm. The values of the sensor outputs are used as the input to the RAM 
node, in order to generate one of the classified environments. In this research, eight classes of the 
environmental patterns are utilized for obtaining information about the initial patterns of the 
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environmental situation, such as open space, front wall, U-shape, corridor, left wall, right wall, left 
corner, and right corner, as shown in Fig. 5.  

Although only a few of the environmental patterns are used to train the RAM node, as shown in Fig. 
5, in the training processes it must be generalized to all kinds of environmental patterns. All of the 
patterns, including scattered obstacles in the environment, that may be encountered when a mobile 
robot moves. 

 

 
Fig. 5. Sensory patterns for eight environmental features. 

 
Table 2. Input patterns in RAM node 

RAM nodes 
Input data

8 bits 4 bits 
Max Min Address Max Min Address 

RAM node-1 1000 0000 0111 0000 80h–70h 1000 0111 08h–07h 
RAM node-2 1000 0000 0101 0000 80h–50h 1000 0101 08h–05h 
RAM node-3 1000 0000 0111 0000 80h–70h 1000 0111 08h–07h 
RAM node-4 1000 0000 0101 0000 80h–50h 1000 0101 08h–05h 
RAM node-5 1000 0000 0111 0000 80h–70h 1000 0111 08h–07h 

 
Table 2 shows the threshold data in the RAM node. These neurons operate in binary input values. 

Each neuron collects a vector of bits from network inputs that are used as the RAM address. The 8-bits 
of data from the sensor arrays directly connects to the address lines of the memory. The calculation of 
this value is based on the distance from an obstacle to the robot. In this research, the vector input from 
8-bits only uses 4-bits of MSB for memory optimization. Therefore, the entire amount of data is 20-bits. 
Tables 3 and 4 show the results of memory optimization. The discriminators process only a maximum 
of 5-bits of data, including 4-bits of data from sensors and 1-bit of data for unseen patterns. If 8-bits of 
data is used, memory allocation for processing data is 9-bits and then the number of patterns that can 
be processed are 192 patterns. But if 5-bits of data is used, the number of patterns that can be processed 
are 12 patterns. From these results, the percentage of memory optimization for all RAM nodes is 
achieved at about 93.75%. 
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Table 3. Percentage of RAM memory optimization 
RAM node 8 bits 4 bits Optimization (%) Unseen pattern 

RAM node-1 80h–70h 128–112=16 08h–07h 8–7=1 93.75 15 
RAM node-2 80h–50h 128–79=49 08h–05h 8–4=3 93.75 45 
RAM node-3 80h–70h 128–112=16 08h–07h 8–7=1 93.75 15 
RAM node-4 80h–50h 128–79=49 08h–05h 8–4=3 93.75 45 
RAM node-5 80h–70h 128–112=16 08h–07h 8–7=1 93.75 15 
 

Table 4. Simple discriminator optimization 
Neuron classification from 

sensor array 
RAM node (4 bits MSB) RAM node (4 bits MSB) Neuron (5 bits) 

Max Min Address Max Min Address Max Min 
Z1 (S1+S2) 0111 1000 10fh–04fh 0101 1000 10h–04h 00101 10000 
Z2 (S2+S3) 0101 1000 10fh–04fh 0111 1000 10h–04h 00101 10000 
Z3 (S3+S4) 0111 1000 10fh–04fh 0101 1000 10h–04h 00101 10000 
Z4 (S4+S5) 0101 1000 10fh–04fh 0111 1000 10h–04h 00101 10000 

 
 

4. Results and Analysis 

4.1 Generalization 
 

Table 5. Generalization process 

Input patterns 
Layer-1 

Obstacle position 
Layer-2 

Discriminator relation  Class 
(S1=1), (S2, S3=0), "(S4, S5=0) (Z1>Z2)&(Z2=Z3)&(Z3=Z4) Left Z5  
(S1=1), (S2, S3=0), "(S4=0, S5=1) (Z1>Z2)&(Z2=Z3)&(Z1>Z4) Left, right Z5  
(S1=1), (S2, S3=0), "(S5=0, S4=1) (Z1>Z2)&(Z3=Z4)&(Z1>Z3) Left, right-oblique Z5  
(S1=1), (S2=0, S3=1), "(S4,S5=0) (Z1>Z2)&(Z2=Z3)&(Z3>Z4) Left, front Z5  
(S1, S2=1), (S3=0), "(S4, S5=0) (Z1>Z2)&(Z2>Z3)&(Z3=Z4) Left-oblique Z5  
(S1, S2 =1), (S3=0), "(S4=0, S5=1) (Z1>Z2)&(Z2>Z3)&(Z1>Z4) Left, left-oblique, right Z5  
(S2=1), (S1, S3=0), "(S4, S5=0) (Z1=Z2)&(Z2>Z3)&(Z3=Z4) Left-oblique Z5  
(S2=1), (S1, S3=0), "(S4=0, S5=1) (Z1=Z2)&(Z2>Z3)&(Z2>Z4) Left-oblique, right Z5  
(S2=1), (S1, S3=0), "(S5=0, S4=1) (Z1=Z2)&(Z2>Z3)&(Z3=Z4) Left-oblique, right-oblique Z5  
(S2=1), (S1=0, S3=1), "(S4, S5=0) (Z2>Z1)&(Z2>Z3)&(Z3>Z4) Left-oblique, front Z5  
(S3=1), (S1,S2=0), (S4,S5=0) (Z2=Z3)&(Z2>Z1)&(Z3>Z4) Front Z7 
(S5=1), (S4, S3=0), "(S2, S1=0) (Z4>Z3)&(Z3=Z2)&(Z2=Z1) Right Z6 
(S5=1), (S4, S3=0), "(S2=0, S5=1) (Z4>Z3)&(Z3=Z2)&(Z4>Z1) Right, left Z6 
(S5=1), (S4, S3=0), "(S1=0, S2=1) (Z4>Z3)&(Z2=Z1)&(Z4>Z2) Right, left-oblique Z6 
(S5=1), (S4=0, S3=1), "(S2,S1=0) (Z4>Z3)&(Z3=Z2)&(Z2>Z1) Right, front Z6 
(S5, S4=1), (S3=0), "(S2, S1=0) (Z4>Z3)&(Z3>Z2)&(Z2=Z1) Right-oblique Z6 
(S5, S4 =1), (S3=0), "(S2=0, S1=1) (Z4>Z3)&(Z3>Z2)&(Z4>Z1) Right, right-oblique, left Z6 
(S4=1), (S5, S3=0), "(S2, S1=0) (Z4=Z3)&(Z3>Z2)&(Z2=Z1) Right-oblique Z6 
(S4=1), (S5, S3=0), "(S2=0, S1=1) (Z4=Z3)&(Z3>Z2)&(Z3>Z1) Right-oblique, left Z6 
(S4=1), (S5, S3=0), "(S1=0, S2=1) (Z4=Z3)&(Z3>Z2)&(Z2=Z1) Right-oblique, left-oblique Z6 
(S4=1), (S5=0, S3=1), "(S2, S1=0) (Z3>Z4)&(Z3>Z2)&(Z2>Z1) Right-oblique, front Z6 
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In this research, the generalization process is the ability to correctly classify patterns that are not 
included in the training set. This generalization skill is inherent in the structure of neural networks 
models, including the RAM-based network. However, there is no generalization property in the RAM 
neurons. The generalization aspect is related to the ability to generalize at the pattern recognition level. 
This means that from an unknown pattern the most similar trained pattern can be recalled. Therefore, 
an unknown pattern is considered as a noise version of a trained pattern.  

The performance of RAM-bNN architecture is evaluated in several experiments. The numbers of 
neurons are determined based on the patterns formed in the environment with walls and obstacles in 
different shapes and sizes. It is created as the mobile robot-working domain. To evaluate this 
performance of the approach, 20-bits of neuron is chosen with 4-bits per neuron in two 
microcontrollers. The training process of all of the patterns is presented in increasing order. In this 
research, 20 input patterns are defined to describe every environmental situation. Starting from the 
class of zeros until 20 patterns of all the class. The generalization process for unseen patterns is 
described in Table 5. 

 
4.2 Single Robot Experiments 

 
The performance of the proposed pyramid RAM-based neural network architecture is evaluated in 

several experiments involving mobile robot movement. Experiments are conducted to demonstrate the 
ability of the single mobile robot and swarm robots to recognize various unknown environments. In the 
single mobile robot experiment, a maze environment area containing walls is created as the mobile 
robot-working domain. Obstacles in different shapes and sizes were also used as walls to configure the 
environmental patterns. The RAM-based neural network is learnt in parallel because many physical 
RAMs are used. As such, processing can take place faster and it increases the accuracy in identifying 
environmental patterns as compared to the monolithic architecture and modular architecture proposed 
by do Valle Simoes [12]. In this work every group of neurons in accordance with the sensor group. 
Therefore, the number of neurons can be minimized and the memory is not filled even when adequate 
training has been achieved. This could enhance the generalization process to correctly classify patterns 
that are not included in the training set.  

 
Table 6. Pulse width modulation (PWM) control 

PC7 PC6 PC5 PC4 Data PD4 PD5 
Notation  

    Left motor Right motor Hexa number Left Right 
0 0 0 0 00h 00h 00h Stop 
1 1 0 1 0dh 20h 50h Turn right with ¼ PWM 
1 1 1 0 0eh 30h 50h Turn right with ½ PWM 
0 1 1 1 07h 48h 20h Turn left with ¼ PWM 
1 0 1 1 0bh 48h 30h Turn left with ½ PWM 
1 1 1 1 0fh 48h 50h Forward 

 
The experiments were conducted to utilize a single mobile robot operating in the maze with some 

obstacles, as shown in Fig. 6. The results show that mobile robots try to avoid any existing obstacles and 
to reach the destination point. The mobile robot avoids the obstacles in the environment and its 
movement was adapted to the real-time PWM data. The PWM data for controlling the mobile robot 
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actuator is shown in Table 6. The results obtained, which the mobile robot managed properly in past 
response to any given obstacle and able to reach the end goal. 

The mobile robot managed to avoid an obstacle in the front of it and was able to detect the presence 
of the obstacle as close as 20 cm, as shown in Fig. 6. The infrared sensor readings were taken from the 
front left and back left side. The results show that the mobile robot was successfully able to follow the 
left wall and right wall without hitting the walls. It was able to maintain a minimum distance of 10 cm 
from the wall, as shown in Fig. 6. In a concave environment the mobile robot was capable of avoiding a 
45° obstacle angle. Considering the four experiments above, the mobile robot was able to move and 
maneuver to avoid the obstacles in front of it and to follow the wall. There was no situation where the 
mobile robot was not able to see the obstacles. 
 

 

 
Fig. 6. Experiment with single robot. 

 
The variation of data output for controlling the mobile robot actuator according to the pulse width 

modulation (PWM) regulation is shown in Fig. 7. The PWM value changed under three conditions 
such as maximum, medium, and minimum. When the mobile robot is working at  full speed, its 
maximum speed value is 4 cm/sec when no obstacle is present. If the obstacle is far away, the mobile 
robot’s at medium speed is 2 cm/sec or the speed value at ½ PWM. If the obstacle is near, the mobile 
robot’s minimum speed is 1 cm/sec or the speed value at ¼ PWM. Fig. 7(a)-(c) respectivelly, show the 
speed control of a single mobile robot when it moves in three environmental situation, such as turn 
right, turn left, and open space. The change of speed in a stable condition and a swarm robot’s move in 
smooth trajectories. 
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(a) 

 
(b) 

 
(c) 

Fig. 7. Single mobile robot movement. (a) Turn right, (b) turn left, and (c) open space. 
 

In the previous experimental results proposed by Nurmaini and Tutuko [11] show that using the 
RAM-bNN approach has yielded promising results, which indicate that the mobile robot is able to 
recognize the environmental pattern and to achieve robust performance with a lower computational 
cost. Furthermore, it successfully performed in several environments and outperformed other 
controllers, including logic function and fuzzy logic, as shown in Fig. 8. As seen from all of the 
experimental results, this technique could improve single robot recognition level about the 
environmental pattern, since it allows for fast processing. However, in previous architecture the 
generalization and memory optimization has not been discussed and the processing data utilized 8-bits. 
Therefore, the mobile robot moved more slowly because it processes 120-bits per each neuron and had 
a computational cost of 5-kbytes of neurons. In this research, the architecture becomes a multi-layer 
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structure in the processing module with generalization ability and memory optimization. Because only 
4-bits of MSB data and 1-bit for the unseen pattern are used, then the proposed RAM-bNN approach 
processes only 20-bits per each neuron. The process speed is increased and produces less computational 
resources by only 3-kbytes. 

 

 
Fig. 8. Comparison of recognition rate for several environments [11]. 

 
 

4.3 Swarm Robots Implementation 
 
A prototype of swarm robots are designed and implemented by using low cost mobile robots, as 

shown in Fig. 9(a) and (b), respectively. The low cost robot platform uses lithium polymer batteries, 
low-cost infrared sensors, a TGS 2600 gas sensor, simple actuator, and an ATmega16 microcontroller. 
For swarm robots communication, X-Bee Pro OEM/ZigBee is utilized. Our design uses an expandable 
processing board and sensor board with multi-sensing capabilities, which provides a flexible basis if 
experimental needs in the future, such as complex task with several sensors. Later on, various 
locomotion and control modules were added to the proposed architecture. Therefore, they can move in 
all directions. 

Communication systems between swarm robots as a mobile sensor node on two directions from 
point to multipoint or vice versa. Hence, X-Bee is used as a means of communication between the 
mobile node and local server. In the implementation, sending and receiving 8-bits of data from swarm 
robots to the local server conduct the process of the communication system, which can be seen in Table 
7. In this research, the transmission data of the X-Bee system must use 8-bits of data. This is because 
when transmission data is above 8-bits, the data error become 100%. For example, when data 
transmission is 50, 100, 150, and 200, respectively, the measurement error is 0%. But if data transmit is 
260, the communication system produces a data error of about 100%. This is due to the fact that X-Bee 
performs only 8-bits of data transmission, while the 260 exceeds 8-bits or 255h. 
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(a) (b)
Fig. 9. Experiment with swarm robots. (a) Five mobile robots and (b) swarm robots sample. 
 

The swarm robots must traverse the entire path between the current waypoint to the next 
waypoint since the distance between the current positions to the next waypoints can vary for 
each robot. The communication range of the robots is usually limited. This is because the area 
to be searched can be large and the robots can exit the communication range of their neighbors, 
which may result in an indefinite wait and stalling by the system. During this situation, the 
communication system of the swarm robots work in a unidirectional approach and they only 
continuously detect the environment. They just broadcast their information and send it to the 
base station as the local server.  

Initial robot positions and their orientations are generated randomly as shown in Fig 10(a)- 
(c). The current coordinates of the robot are calculated by using the on-board compass. 
Therefore, the initial swarm robot’s position in the environment achieves the new position in 
the whole swarm. For the first step of the experiment, the swarm robots were placed in a 
random position. When they move, every position and motion is recorded. Data collection 
utilizes a computer as a local server and using X-Bee generates all data such as speed, position, 
and other parameters. In some experiments, such data encounter failures, including a robot 
being separated from the flock, or losing direction occur. This is mainly due to external factors 
such as wheel slippage, hardware/software failure, or simply due to sensor mishaps. 

 

Table 7. X-Bee communication results 

No. Transmitter Receiver 1 Receiver 2 Results 

1 50 50 50 Right 

2 100 100 100 Right 

3 150 150 150 Right 

4 200 200 200 Right 

5 260 4 4 Wrong 
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(a) 

 

 
(b) 

 

 

(c) 
Fig. 10. Swarm robots trajectory in simple environment. (a) Three robots and no obstacle, (b) three 
robots with obstacles, and (c) five robots no obstacle. 
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5. Conclusion 

In this paper, the swarm robots localization system based on a pyramid RAM-based Neural Network 
has been presented. Several experiments for validating such architecture have been proposed. Our 
system produces fast responses and is compact in size. Our strategy allows for a mobile robot to learn 
and move around in an unknown environment. The results show that the mobile robots have the ability 
to detect and avoid obstacles and are capable of localizing the target in real time. 

We have proposed a pyramid RAM node model. Its architecture differs in the way it accesses the 
contents. Due to this model has generalization of the original RAM. The proposed architecture does not 
only access the addressed content in order to calculate the neuron output, but also the generalization 
region of this content. The implementation of pyramid RAM-based Neural Network architecture only 
needs a certain amount of RAM and produces a simple control algorithm. This architecture is easily 
implemented in hardware, like a microcontroller, for improving the computational performances.  

The main circumstances of choosing a simple RAM-based Neural Network architecture for the 
localization of swarm robots are shown, as is their importance to the environmental recognition level. 
The advantages of the employing the microcontroller are the great facilities of the hardware 
implementation of the neural network. This fact increases the swarm robot’s performance while it 
permits neural network appliances in real time environmental localization. In the future, the Particle 
Swarm Optimization technique will be combined with the pyramid RAM-based Neural Network to 
improve the performance of the swarm robots in a dynamic environment.  

 
 

Acknowledgement 

This research is supported by the Robotic and Control Research Lab of the Computer Engineering 
Department in the Faculty of Computer Science at Sriwijaya University. This research was funded by 
Competitive Research Grants from Sriwijaya University. 

 
 

References 

[1]  B. McElroy, M. Gillham, G. Howells, S. Spurgeon, S. Kelly, J. Batchelor, and M. Pepper, “Highly efficient 
localisation utilising weightless neural systems,” in Proceedings of 2012 European Symposium on Artificial Neural 
Networks, Bruges, Belgium, 2012, pp. 543-548. 

[2]  S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA: MIT Press, 2005. 
[3]  M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA Grand Challenge: The Great Robot Race. Berlin: 

Springer, 2007. 
[4]  M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban Challenge: Autonomous Vehicles in City Traffic. 

Berlin: Springer, 2009. 
[5]  H. Lang, Y. Wang, & C. W. De Silva, “Mobile robot localization and object pose estimation using optical 

encoder, vision and laser sensors,” in Proceedings of IEEE International Conference on Automation and Logistics 
(ICAL2008), Qingdao, China, 2008, pp. 617-622. 

[6]  A. Napier, G. Sibley, and P. Newman, “Real-time bounded-error pose estimation for road vehicles using vision,” 
in Proceedings of 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), 
Funchal, Portugal, 2010, pp. 1141-1146. 



Siti Nurmaini and  Ahmad Zarkasi  
 

 

J Inf Process Syst, Vol.11, No.3, pp.370~388, September 2015 | 387 

[7]  A. Martinelli, “The odometry error of a mobile robot with a synchronous drive system,” IEEE Transactions on 
Robotics and Automation, vol. 18, no. 3, pp. 399-405, 2002. 

[8]  K. S. Chong and L. Kleeman, “Accurate odometry and error modelling for a mobile robot,” in Proceedings of 
1997 IEEE International Conference on  Robotics and Automation, Albuquerque, NM, 1997, pp. 2783-2788. 

[9]  Y. Sun, J. Xiao, and F. Cabrera-Mora, “Robot localization and energy-efficient wireless communications by 
multiple antennas,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS2009), St. Louis, MO, 2009, pp. 377-381. 

[10]  M. Conforth and Y. Meng, “An artificial neural network based learning method for mobile robot localization,” 
in Robotics Automation and Control. Vienna: i-TECH, 2008, pp. 103-112. 

[11]  S. Nurmaini and B. Tutuko, “A new classification technique in mobile robot navigation,” Telkomnika, vol. 9, no. 
3, pp. 453-464, 2011. 

[12]  do Valle Simoes, “An embedded evolutionary controller to navigate a population of autonomous robots,” in 
Frontiers in Evolutionary Robotics. Vienna: i-TECH, 2008, pp. 439-464. 

[13]  I. Aleksander, M. De Gregorio, F. M. G. Franca, P. M. V. Lima, and H. Morton, “A brief introduction to 
Weightless Neural Systems,” in Proceedings of European Symposium on Artificial Neural Networks (ESANN), 
Bruges, Belgium, 2009, pp. 299-305. 

[14]  S. Nurmaini, S. Z. M. Hashim, and D. N. A. Jawawi, “Modular weightless neural network architecture for 
intelligent navigation,” International Journal of Advances in Soft Computing and its Applications, vol. 1, no. 1, 
pp. 1-18, 2009. 

[15]  I. Aleksander, W. V. Thomas, and P. A. Bowden, “WISARD: a radical step forward in image recognition,” Sensor 
Review, vol. 4, no. 3, pp. 120-124, 1984. 

[16]  W. K. Kan and I. Aleksander, “A probabilistic logic neuron network for associative learning,” in Neural 
Computing Architectures. Cambridge, MA: MIT Press, 1989, pp. 156-171. 

[17]  I. Aleksander, “From WISARD to MAGNUS: a family of weightless virtual neural machines,” in RAM-Based 
Neural Networks. Singapore: World Scientific, 1998, pp. 18-30. 

[18] J. G. Taylor, “Spontaneous behaviour in neural networks,” Journal of Theoretical Biology, vol. 36, no. 3, pp. 513-
528, 1972. 

[19]  R. G. Bowmaker and G. G. Coghili, “Improved recognition capabilities for goal seeking neuron,” Electronics 
Letters, vol. 28, no. 3, pp. 220-221, 1992. 

[20]  I. Aleksander, “Ideal neurons for neural computers,” in Parallel Processing in Neural Systems and Computers. 
Amsterdam: Elseriver, 1990, pp. 225-228. 

[21]  A. F. De Souza, F. Pedroni, E. Oliveira, P. M. Ciarelli, W. F. Henrique, L. Veronese, and C. Badue, “Automated 
multi-label text categorization with VG-RAM weightless neural networks,” Neurocomputing, vol. 72, no. 10, pp. 
2209-2217, 2009. 

[22]  M. A. Hannan Bin Azhar and K. R. Dimond, “Design of an FPGA based adaptive neural controller for 
intelligent robot navigation,” in Proceedings of Euromicro Symposium on Digital System Design, Dortmund, 
Germany, 2002, pp. 283-290. 

[23]  S. S. Botelho, E. do Valle Simões, L. F. Uebel, and D. Barone, “High speed neural control for robot navigation,” 
in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Beijing, China, 1996, pp. 
1956-1959. 

[24]  Q. Yao, D. Beetner, D. C. Wunsch, and B. Osterloh, “A RAM-based neural network for collision avoidance in a 
mobile robot,” in Proceedings of the International Joint Conference on Neural Networks, Portland, OR, 2003, pp. 
3157-3160. 

[25]  B. McElroy and G. Howells, “Automated adaptation of input and output data for a weightless artificial neural 
network,” International Journal of Database Theory and Application, vol. 4, no. 3, pp. 49-58, 2011. 

[26]  P. Coraggio and M. De Gregorio, “WiSARD and NSP for robot global localization,” in Nature Inspired Problem-
Solving Methods in Knowledge Engineering. Heidelberg: Springer, 2007, pp. 449-458. 



Simple Pyramid RAM-Based Neural Network Architecture for Localization of Swarm Robots   

 

388 | J Inf Process Syst, Vol.11, No.3, pp.370~388, September 2015 

[27] M. De Gregorio, “Active and reactive use of virtual neural sensors, in Proceedings of European Symposium on 
Artificial Neural Networks (ESANN), Bruges, Belgium, 2008, pp. 349-354. 

 
 

Siti Nurmaini   http://orcid.org/0000-0002-8024-2952 
 
Dr. Siti Nurmaini was born in Palembang, August 2, 1969. Currently, she is a lecturer 
in department of computer engineering, Faculty of Computer Science, University of 
Sriwijaya, Indonesia. She is graduated from department of electrical engineering-
UNSRI, Master of Engineering from Institute Technology Bandung (ITB) in 
majoring of control system and computer. She received a Ph.D. degree from 
Universiti Teknologi Malaysia-UTM majoring of intelligent control. She is very 
interesting in research area of the soft computing, control system, embedded system 
and robotic.  

 
 

Ahmad Zarkasi   
 
Ahmad Zarkasi, M.T., was born in Palembang, August 25, 1979. He received Master 
of Engineering from Institute Technology Bandung (ITB) in majoring of computer 
engineering, in 2013. His research interests are in the area of Microprocessors, SoC 
(System-On-Chip), embedded system, and robotics. They include topics such as 
WNNs in robotic system, Pattern Recognition for robotic mapping. 


