• 제목/요약/키워드: Mobile Robots

검색결과 914건 처리시간 0.024초

강화 학습에 의한 소형 자율 이동 로봇의 협동 알고리즘 구현 (A reinforcement learning-based method for the cooperative control of mobile robots)

  • 김재희;조재승;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.648-651
    • /
    • 1997
  • This paper proposes methods for the cooperative control of multiple mobile robots and constructs a robotic soccer system in which the cooperation will be implemented as a pass play of two robots. To play a soccer game, elementary actions such as shooting and moving have been designed, and Q-learning, which is one of the popular methods for reinforcement learning, is used to determine what actions to take. Through simulation, learning is successful in case of deliberate initial arrangements of ball and robots, thereby cooperative work can be accomplished.

  • PDF

군집 이동형 사회안전 로봇을 위한 효율적인 수색 알고리즘 개발 (Efficient Sweeping Algorithm for Multi-Security Mobile Robots)

  • 손웅희;한창수;지상훈
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1686-1691
    • /
    • 2010
  • In this paper, we aim at providing a novel sweeping method for multi-security mobile robots. The sweeping problem of the multi-robots can be modeled as the stick pulling problem in which the swarm robots should sweep unknown terrains in order to remove sticks collaboratively. For the purpose, we define a certain map, what is called stick map. And we suggest how to make swarm robots build up and utilize the map in order to improve the productivity of collaborative removing sticks. Finally, the efficiency of our algorithm is verified with simulation experiments.

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

화방 정찰 체계에서의 다수의 이동 로봇을 위한 시간 효율적인 경로 계획 알고리즘에 대한 연구 (Time-Efficient Trajectory Planning Algorithms for Multiple Mobile Robots in Nuclear/Chemical Reconnaissance System)

  • 김재성;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1047-1055
    • /
    • 2009
  • Since nuclear and chemical materials could damage people and disturb battlefield missions in a wide region, nuclear/chemical reconnaissance systems utilizing multiple mobile robots are highly desirable for rapid and safe reconnaissance. In this paper, we design a nuclear/chemical reconnaissance system including mobile robots. Also we propose time-efficient trajectory planning algorithms using grid coverage and contour finding methods for reconnaissance operation. For grid coverage, we performed in analysis on time consumption for various trajectory patterns generated by straight lines and arcs. We proposed BCF (Bounded Contour Finding) and BCFEP (Bounded Contour Finding with Ellipse Prediction) algorithms for contour finding. With these grid coverage and contour finding algorithms, we suggest trajectory planning algorithms for single, two or four mobile robots. Various simulations reveal that the proposed algorithms improve time-efficiency in nuclear/chemical reconnaissance missions in the given area. Also we conduct basic experiments using a commercial mobile robot and verify the time efficiency of the proposed contour finding algorithms.

실내 환경에서의 이동로봇 제어를 위한 유비쿼터스 인터페이스 시스템 (A Ubiquitous Interface System for Mobile Robot Control in Indoor Environment)

  • 안현식;송재성
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.66-71
    • /
    • 2006
  • Recently, there are lots of concerning on ubiquitous environment of robots and URC (Ubiquitous Robotic Companion). In this paper, a practical ubiquitous interface system far controlling mobile robots in indoor environments was proposed. The interface system was designed as a manager-agent model including a PC manager, a mobile manager, and robot agents for being able to be accessed by any network. In the system, the PC manager has a 3D virtual environment and shows real images for a human-friendly interface, and share the computation load of the robot such as path planning and managing geographical information. It also contains Hybrid Format Manager(HFM) working for transforming the image, position, and control data and interchanging them between the robots and the managers. Mobile manager working in the minimized computing condition of handsets has a mobile interface environment displaying the real images and the position of the robot and being able to control the robots by pressing keys. Experimental results showed the proposed system was able to control robots rising wired and wireless LAN and mobile Internet.

Integrating Ant Colony Clustering Method to a Multi-Robot System Using Mobile Agents

  • Kambayashi, Yasushi;Ugajin, Masataka;Sato, Osamu;Tsujimura, Yasuhiro;Yamachi, Hidemi;Takimoto, Munehiro;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • 제8권3호
    • /
    • pp.181-193
    • /
    • 2009
  • This paper presents a framework for controlling mobile multiple robots connected by communication networks. This framework provides novel methods to control coordinated systems using mobile agents. The combination of the mobile agent and mobile multiple robots opens a new horizon of efficient use of mobile robot resources. Instead of physical movement of multiple robots, mobile software agents can migrate from one robot to another so that they can minimize energy consumption in aggregation. The imaginary application is making "carts," such as found in large airports, intelligent. Travelers pick up carts at designated points but leave them arbitrary places. It is a considerable task to re-collect them. It is, therefore, desirable that intelligent carts (intelligent robots) draw themselves together automatically. Simple implementation may be making each cart has a designated assembly point, and when they are free, automatically return to those points. It is easy to implement, but some carts have to travel very long way back to their own assembly point, even though it is located close to some other assembly points. It consumes too much unnecessary energy so that the carts have to have expensive batteries. In order to ameliorate the situation, we employ mobile software agents to locate robots scattered in a field, e.g. an airport, and make them autonomously determine their moving behaviors by using a clustering algorithm based on the Ant Colony Optimization (ACO). ACO is the swarm intelligence-based methods, and a multi-agent system that exploit artificial stigmergy for the solution of combinatorial optimization problems. Preliminary experiments have provided a favorable result. In this paper, we focus on the implementation of the controlling mechanism of the multi-robots using the mobile agents.

무선통신 환경에서 데이터 손실 시 모바일 로봇의 측위 알고리즘 (Localization Algorithms for Mobile Robots with Presence of Data Missing in a Wireless Communication Environment)

  • 김신;신성;유성현
    • 한국전자통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.601-608
    • /
    • 2023
  • 모바일 로봇은 다양한 환경에서 임무를 수행하기 때문에 산업 분야에서 크게 활용되고 있다. 모바일 로봇이 작업을 수행하기 위해서는 경로를 생성하고 장애물을 탐지하기 때문에 실시간으로 로봇의 정확한 위치를 파악하는 것은 중요하다. 특히, 실내 환경에서 자율주행하는 모바일 로봇은 주어진 일을 정해진 영역에서 수행할 때, 보다 정밀한 측위 성능이 요구된다. 모바일 로봇은 무선통신 환경에서 송수신 데이터의 손실이 빈번히 발생하며, 데이터 손실 발생 시 예측 기술을 통해 로봇 스스로 자신의 위치를 파악하여 임무 수행을 이어 나가야 한다. 본 논문에서는 모바일 로봇의 위치 추정 정확도를 향상시키고, 데이터 손실 문제를 해결하고자 확장 칼만 필터 기반의 알고리즘을 제안한다. 삼변측량은 해당 순간에만 측정한 값을 사용하여 측위 성능이 부정확한 반면, 제안한 알고리즘은 데이터 손실 환경에서 예측 측정값의 잔차를 이용하기 때문에 모바일 로봇의 정밀한 위치 추정이 가능하다. 제안한 알고리즘의 우수한 성능 검증을 위하여 데이터 손실이 없는 환경과 데이터 손실 환경에서 모바일 로봇의 시뮬레이션을 수행하였다.

스위칭 연결 구조를 갖는 외발형 이동 로봇들에 대한 대형 제어 알고리듬 (Formation Control Algorithm for Coupled Unicycle-Type Mobile Robots Through Switching Interconnection Topology)

  • 김홍근;심형보;백주훈
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.439-444
    • /
    • 2012
  • In this study, we address the formation control problem of coupled unicycle-type mobile robots, each of which can interact with its neighboring robots by communicating their position outputs. Each communication link between two mobile robots is assumed to be established according to the given time-varying interconnection topology that switches within a finite set of connected fixed undirected networks and has a non-vanishing dwell time. Under this setup, we propose a distributed formation control algorithm by using the dynamics extension and feedback linearization methods, and by employing a consensus algorithm for linear multi-agent systems which provides arbitrary fast convergence rate to the agreement of the multi-agent system. Finally, the proposed result is demonstrated through a computer simulation.

Generation of Fuzzy Rules for Cooperative Behavior of Autonomous Mobile Robots

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.164-169
    • /
    • 1998
  • Complex "lifelike" behaviors are composed of local interactions of individuals under fundamental rules of artificial life. In this paper, fundamental rules for cooperative group behaviors, "flocking" and "arrangement", of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Fuzzy rules in Sugeno type and their related paramenters are automatically generated from clustering input-output data obtained from the algorithms the group behaviors. Simulations demonstrate the fuzzy rules successfully realize group intelligence of mobile robots.

  • PDF

포텐셜 함수를 이용한 자율주행 로봇의 장애물 회피에 관한 연구 (Obstacle Avoidance Technique of the Autonomous Mobile Robot using Potential Function)

  • 남문호;김민수;정찬수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.266-268
    • /
    • 2005
  • Recently, the ability of sensing obstacles by oneself and creating suitable moving path in mobile robots are required to provide various kinds automation services. Therefore, in this paper, we studied the avoidance behavior of mobile robots from dynamic obstacles using potential function that minimizes distance and time. We examined the performance of the proposed algorithm by comparing the method of based on the geometrical experience in simulations.

  • PDF