• Title/Summary/Keyword: Mobile Robot Control

Search Result 1,466, Processing Time 0.031 seconds

Mobile Robot with Artificial Olfactory Function

  • Kim, Jeong-Do;Byun, Hyung-Gi;Hong, Chul-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.223-228
    • /
    • 2001
  • We have been developed an intelligent mobile robot with an artificial olfactory function to recognize odours and to track odour source location. This mobile robot also has ben installed an engine for speech recognition and synthesis and is controlled by wireless communication. An artificial olfactory system based on array of 7 gas sensors has been installed in the mobile robot for odour recognition, and 11 gas sensors also are located in the obttom of robot to track odour sources. 3 optical sensors are also in cluded in the intelligent mobile robot, which is driven by 2 D. C. motors, for clash avoidance in a way of direction toward an odour source. Throughout the experimental trails, it is confirmed that the intelligent mobile robot is capable of not only the odour recognition using artificial neural network algorithm, but also the tracking odour source using the step-by-step approach method. The preliminary results are promising that intelligent mobile robot, which has been developed, is applicable to service robot system for environmental monitoring, localization of odour source, odour tracking of hazardous areas etc.

  • PDF

LMI-Based Fuzzy Control for Wheeled Mobile Robot (바퀴형 이동로봇의 LMI기반 퍼지 제어)

  • Choi, Hyun-Eui;Kim, Tae-Kue;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1719_1720
    • /
    • 2009
  • Wheeled mobile robot has different mobility and steerability which determined by type of wheel and it's arrangement. Generally wheeled mobile robot's dynamics are nonlinear and various control methods have studied to control the mobile robot efficiently. In this paper, a T-S fuzzy modeling of a 2-wheeled mobile robot is mand a stable LMI-based state feedback fuzzy controller is designed and applied to the position control of the mobile robot for the reference trajectory following. Also, the verification of the designed controller is done by computer simulation.

  • PDF

Remote Control of a Mobile Robot using Embedded web server (Embedded web server를 이용한 이동로봇의 원격제어)

  • Park, Jeong-Hoon;Kim, Jin-Geun;Kang, Moon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2693-2695
    • /
    • 2005
  • In this paper, we developed a more efficient system for the remote control and monitoring of a wheeled mobile robot using internet without spatial limitation. The hardware configuration of the remote control system for a wheeled mobile robot includes a client PC executed on the remote site, a embedded web-server and a mobile robot with many measuring equipments. The communication between a client PC and a embedded web-server is implemented through internet. And the Bluetooth module is used for connecting a embedded web-server and a mobile robot. A GUI program has been developed by using JavaScript in order to easily control a mobile robot on a client PC.

  • PDF

A study on the new method of force reflection control for the teleoperated mobile robot

  • Hong, Sun-Gi;Lee, Ju-Jang;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1523-1526
    • /
    • 1996
  • This paper presents a new method of force reflection in the teleoperated mobile robot control: artificial force feedback. Generally it is well known that force feedback from slave to master increases the reality with which the operator interacts with the environment. In the applications of the teleoperated mobile robot, however, such a force feedback control algorithm has rarely appeared in the literature because the contact force between the environment and the mobile robot is not available. In this paper, a method of artificially generating the feedback force for the teleoperated mobile robot is presented in order to improve the task performance. The computed artificial force feeds into the new designed joystick so as to increase the telepresence of the environment. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

Sound Source Tracking Control of a Mobile Robot Using a Microphone Array (마이크로폰 어레이를 이용한 이동 로봇의 음원 추적 제어)

  • Han, Jong-Ho;Han, Sun-Sin;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.343-352
    • /
    • 2012
  • To follow a sound source by a mobile robot, the relative position and orientation of the sound source from the mobile robot have been estimated using a microphone array. In this research, the difference among the traveling times of the sound source to each of three microphones has been used to calculate the distance and orientation of the sound source from the mobile robot which carries the microphone array. The cross-correlation between two signals has been applied for detecting the time difference between two signals, which provides reliable and precise value of the time difference comparing to the conventional methods. To generate the tracking direction to the sound source, fuzzy rules are applied and the results are used to control the mobile robot in a real-time. The efficiency of the proposed algorithm has been demonstrated through the real experiments comparing to the conventional approaches.

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF

A Study on the Configuration Control of a Mobile Manipulator Based on the Optimal Cost Function

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2005
  • One of the most important feature of the Mobile Manipulator is redundant freedom. Using the redundant freedom, Mobile Manipulator can move various mode, perform dexterous motion. In this paper, to improve robot job ability, as two robots perform a job in co-operation control, we studied optimal position and posture of Mobile Manipulator with minimum movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using mobility of Mobile robot, weight vector of robots is determined. Using Gradient methode, global motion trajectory is minimized. so the job which Mobile Manipulator perform is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot. and discussed the result.

Collision Avoidance of a Mobile Robot Using Intelligent Force Control Algorithm Based on Robot Dynamics (동역학 기반의 지능 힘제어 방식을 이용한 이동 로봇의 장애물 회피에 대한 연구)

  • Jang Eun Soo;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.799-808
    • /
    • 2004
  • In this paper, a new collision avoidance algorithm based on the dynamic model of a mobile robot is proposed. In order to avoid obstacles on the path of a mobile robot, intelligent force control is used to regulate accurate distance between a robot and an obstacle. Since uncertainties from robot and environment dynamics degrade the performance of a collision avoidance task, neural network is used to compensate for uncertainties so that the collision avoidance can be performed intelligently. Simulation studies are conducted to confirm the proposed collision avoidance tracking control algorithm.

Localization of a High-speed Mobile Robot Using Ultrasonic/RF Sensor and Global Features (RF/초음파센서와 이동특성에 기반한 고속 이동로봇의 위치추정기법)

  • Lee, Soo-Sung;Choi, Mun-Gyu;Park, Jae-Hyun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.734-741
    • /
    • 2009
  • A new localization algorithm is proposed for a fast moving mobile robot, which utilizes only one beacon and the global features of the differential-driving mobile robot. It takes a relatively long time to localize a mobile robot with active beacon sensors since the distance to the beacon is measured by the traveling time of the ultrasonic signal. When the mobile robot is moving slowly the measurement time does not yield a high error. At a higher mobile robot speed, however, the localization error becomes too large to locate the mobile robot. Therefore, in high-speed mobile robot operations, instead of using two or more active beacons for localization, only one active beacon and the global features of the mobile robot are used to localize the mobile robot in this research. The two global features are the radius and center of the rotational motion for the differential-driving mobile robot which generally describe motion of the mobile robot and are used for the trace prediction of the mobile robot. In high speed operations the localizer finds an intersection point of this predicted trace and a circle which is centered at the beacon and has the radius of the distance between the mobile robot and the beacon. This new approach resolves the large localization error caused by the high speed of the mobile robot. The performance of the new localization algorithm has been verified through the experiments with a high-speed mobile robot.

Design of mobile robot control language (이동 로보트 시스템을 위한 제어 언어의 설계)

  • ;;;Chung, I.;Kim, K. K.;Kim, K. B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.779-782
    • /
    • 1991
  • The design of a control language of mobile robot system for autonomous operations is explained in this paper. The on-board controller consists of one-chip microcontrollerbased system and communicates with the host computer. It decodes the received commands and controls the mobile robot. The control language is basically of interpreter type and is consisted of motion primitives and sensing primitives. The combinations of primitives are constructed for mobile robot operations.

  • PDF