• Title/Summary/Keyword: Mobile Gate

Search Result 134, Processing Time 0.023 seconds

A 60 GHz Bidirectional Active Phase Shifter with 130 nm CMOS Common Gate Amplifier (130 nm CMOS 공통 게이트 증폭기를 이용한 60 GHz 양방향 능동 위상변화기)

  • Hyun, Ju-Young;Lee, Kook-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1111-1116
    • /
    • 2011
  • In this paper, a 60 GHz bidirectional active phase shifter with 130 nm CMOS is presented by replacing CMOS passive switchs in switched-line type phase shifter with Common Gate Amplifier(bidirectional amplifier). Bidirectional active phase shifter is composed of bidirectional amplifier blocks and passive delay line network blocks. The suitable topology of bidirectional amplifier block is CGA(Common Gate Amplifier) topology and matching circuits of input and output are symmetrical due to design same characteristic of it's forward and reverse way. The direction(forward and reverse way) and amplitude of amplification can be controlled by only one bias voltage($V_{DS}$) using combination bias circuit. And passive delay line network blocks are composed of microstrip line. An 1-bit phase shifter is fabricated by Dongbu HiTek 1P8M 130-nm CMOS technology and simulation results present -3 dB average insertion loss and respectively 90 degree and 180 degree phase shift at 60 GHz.

SLS (Sequential Lateral Solidification) Technology for High End Mobile Applications

  • Kang, Myung-Koo;Kim, Hyun-Jae;Kim, ChiWoo;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.8-11
    • /
    • 2007
  • The new technologies in mobile display developed in SEC are briefly reviewed. For a differentiation, SEC's LTPS line is based on SLS (Sequential Lateral Solidification) technology. In this paper, the characteristics of SEC's SLS in recent and future mobile displays were discussed. The microstructure produced by SLS crystallization is dependent on SLS process conditions such as mask design, laser energy density, and pulse duration time. The microstructure and TFT (Thin Film Transistor) performance are closely related. For an optimization of TFT performance, SLS process condition should be adjusted. Other fabrication processes except crystallization such as blocking layer, gate insulator deposition and cleaning also affect TFT performance. Optimized process condition and tailoring mask design can make it possible to produce high quality AMOLED devices. The TFT non-uniformity caused by laser energy density fluctuation could be successfully diminished by mixing technology.

  • PDF

A Study on the Logic Design of Multi-Display Driver (멀티 디스플레이 구동 드라이버 로직 설계에 관한 연구)

  • Jin K.C.;Chun K.J.;Kim S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.212-215
    • /
    • 2005
  • The needs of larger screen in mobile device would be increased as the time of ubiquitous and convergence is coming. And, the type of mobile device has been evolved from bar, slide to row. Recently, the study on the multi-display screen which has seamless gap between two display panel has been published, and moreover the System On Chip(SOC) design strategy of core chip has been the most promising Field-Programmable Gate Array(FPGA) technology in the display system. Therefore, in this paper, we proposed the design technique of SOC and evaluated the effectiveness with Very high speed Hardware Description Language(VHDL) Intellectual Property (IP) for the operation of multi display device driver. Also, This IP design would be to allow any kind of user interface in control system.

  • PDF

Separate Factor Caching Scheme for Mobile Web Service (모바일 웹 서비스를 위한 요소분할 캐싱 기법)

  • Sim, Kun-Jung;Kang, Eui-Sun;Kim, Jong-Keun;Ko, Hee-Ae;Lim, Young-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.14D no.4 s.114
    • /
    • pp.447-458
    • /
    • 2007
  • The objective of this study is to provide faster mobile web service by improving performance of Contents Cache used for mobile web service in the existing Mobile Gate System. It was found that two elements existed in Mark-Up page transcoded by Contents Generator. One of the elements was dependent only on the requested DIDL page and Mark-Up type. The other was dependent on each of the requested DIDL page, Mark-Up type, size of mobile display 모바일 장치 to request service, type of images available and color depth count of the images available. The conventional Contents Cache saved the entire Mark-Up page to hold both of the two elements. This caused the problem where storage space was not effectively used because reusable elements were repetitively saved in cache memory domain due to change in one of the elements even though all the other elements were the same. As a result, a larger number of transcoded Mark-Up pages could not be saved in the same cache memory size. Therefore, in this study, Mark-Up pages transcoded by Contents Generator were divided into two elements and were separately saved. Also, in order to respond to the demand for replacing data in cache with new data, this study applied two algorithms of LFU and LRU. This study proposed the method to implement cache performance of faster speed by enabling to save more number of the transcoded Mark-Up pages in the same cache storage space.

Eelctrical and Structural Properties of $CaF_2$Films ($CaF_2$ 박막의 전기적, 구조적 특성)

  • 김도영;최석원;이준신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1122-1127
    • /
    • 1998
  • Group II-AF_2$films such as $CaF_2$, $SrF_2$, and $BaF_2$ have been commonly used many practical applications such as silicon on insulatro(SOI), three-dimensional integrated circuits, buffer layers, and gate dielectrics in filed effect transistor. This paper presents electrical and structural properties of fluoride films as a gate dielectric layer. Conventional gate dielectric materials of TFTs like oxide group exhibited problems on high interface trap charge density($D_it$), and interface state incorporation with O-H bond created by mobile hydrogen and oxygen atoms. To overcome such problems in conventional gate insulators, we have investigated $CaF_2$ films on Si substrates. Fluoride films were deposited using a high vacuum evaporation method on the Si and glass substrate. $CaF_2$ films were preferentially grown in (200) plane direction at room temperature. We were able to achieve a minimum lattice mismatch of 0.74% between Si and $CaF_2$ films. Average roughness of $CaF_2$ films was decreased from 54.1 ${\AA}$ to 8.40 ${\AA}$ as temperature increased form RT and $300^{\circ}C$. Well fabricated MIM device showed breakdown electric field of 1.27 MV/cm and low leakage current of $10^{-10}$ A/$cm^2$. Interface trap charge density between $CaF_2$ film and Si substrate was as low as $1.8{\times}10^{11}cm^{-2}eV^{-1}$.

  • PDF

Wireless Mobile Sensor Networks with Cognitive Radio Based FPGA for Disaster Management

  • Ananthachari, G.A. Preethi
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1097-1114
    • /
    • 2021
  • The primary objective of this work was to discover a solution for the survival of people in an emergency flood. The geographical information was obtained from remote sensing techniques. Through helpline numbers, people who are in need request support. Although, it cannot be ensured that all the people will acquire the facility. A proper link is required to communicate with people who are at risk in affected areas. Mobile sensor networks with field-programmable gate array (FPGA) self-configurable radios were deployed in damaged areas for communication. Ad-hoc networks do not have a centralized structure. All the mobile nodes deploy a temporary structure and they act as a base station. The mobile nodes are involved in searching the spectrum for channel utilization for better communication. FPGA-based techniques ensure seamless communication for the survivors. Timely help will increase the survival rate. The received signal strength is a vital factor for communication. Cognitive radio ensures channel utilization in an effective manner which results in better signal strength reception. Frequency band selection was carried out with the help of the GRA-MADM method. In this study, an analysis of signal strength for different mobile sensor nodes was performed. FPGA-based implementation showed enhanced outcomes compared to software-based algorithms.

A Design of Low-power/Small-area Arithmetic Units for Mobile 3D Graphic Accelerator (휴대형 3D 그래픽 가속기를 위한 저전력/저면적 산술 연산기 회로 설계)

  • Kim Chay-Hyeun;Shin Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.857-864
    • /
    • 2006
  • This paper describes a design of low-power/small-area arithmetic circuits which are vector processing unit powering nit, divider unit and square-root unit for mobile 3D graphic accelerator. To achieve area-efficient and low-power implementation that is an essential consideration for mobile environment, the fixed-point f[mat of 16.16 is adopted instead of conventional floating-point format. The vector processing unit is designed using redundant binary(RB) arithmetic. As a result, it can operate 30% faster and obtained gate count reduction of 10%, compared to the conventional methods which consist of four multipliers and three adders. The powering nit, divider unit and square-root nit are based on logarithm number system. The binary-to-logarithm converter is designed using combinational logic based on six-region approximation method. So, the powering mit, divider unit and square-root unit reduce gate count when compared with lookup table implementation.

Second-Order G-equivariant Logic Gate for AND Gate and its Application to Secure AES Implementation (AND 게이트에 대한 2차 G-equivariant 로직 게이트 및 AES 구현에의 응용)

  • Baek, Yoo-Jin;Choi, Doo-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.221-227
    • /
    • 2014
  • When implementing cryptographic algorithms in mobile devices like smart cards, the security against side-channel attacks should be considered. Side-channel attacks try to find critical information from the side-channel infromation obtained from the underlying cryptographic devices' execution. Especially, the power analysis attack uses the power consumption profile of the devices as the side-channel information. This paper proposes a new gate-level countermeasure against the power analysis attack and the glitch attack and suggests how to apply the measure to securely implement AES.

Gate Management System by Face Recognition using Smart Phone (스마트폰을 이용한 얼굴인식 출입관리 시스템)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.9-15
    • /
    • 2011
  • In this paper, we design and implement of gate management system by face recognition using smart phone. We investigate various algorithms for face recognition on smart phones. First step in any face recognition system is face detection. We investigated algorithms like color segmentation, template matching etc. for face detection, and Eigen & Fisher face for face recognition. The algorithms have been first profiled in MATLAB and then implemented on the Android phone. While implementing the algorithms, we made a tradeoff between accuracy and computational complexity of the algorithm mainly because we are implementing the face recognition system on a smart phone with limited hardware capabilities.

Implementation of Rijndael Block Cipher Algorithm

  • Lee, Yun-Kyung;Park, Young-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.164-167
    • /
    • 2002
  • This paper presents the design of Rijndael crypto-processor with 128 bits, 192 bits and 256 bits key size. In October 2000 Rijndael cryptographic algorithm is selected as AES(Advanced Encryption Standard) by NIST(National Institute of Standards and Technology). Rijndael algorithm is strong in any known attacks. And it can be efficiently implemented in both hardware and software. We implement Rijndael algorithm in hardware, because hardware implementation gives more fast encryptioN/decryption speed and more physically secure. We implemented Rijndael algorithm for 128 bits, 192 bits and 256 bits key size with VHDL, synthesized with Synopsys, and simulated with ModelSim. This crypto-processor is implemented using on-the-fly key generation method and using lookup table for S-box/SI-box. And the order of Inverse Shift Row operation and Inverse Substitution operation is exchanged in decryption round operation of Rijndael algorithm. It brings about decrease of the total gate count. Crypto-processor implemented in these methods is applied to mobile systems and smart cards, because it has moderate gate count and high speed.

  • PDF