• Title/Summary/Keyword: Mobile AI

Search Result 209, Processing Time 0.024 seconds

Detecting Knowledge structures in Artificial Intelligence and Medical Healthcare with text mining

  • Hyun-A Lim;Pham Duong Thuy Vy;Jaewon Choi
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.817-837
    • /
    • 2019
  • The medical industry is rapidly evolving into a combination of artificial intelligence (AI) and ICT technology, such as mobile health, wireless medical, telemedicine and precision medical care. Medical artificial intelligence can be diagnosed and treated, and autonomous surgical robots can be operated. For smart medical services, data such as medical information and personal medical information are needed. AI is being developed to integrate with companies such as Google, Facebook, IBM and others in the health care field. Telemedicine services are also becoming available. However, security issues of medical information for smart medical industry are becoming important. It can have a devastating impact on life through hacking of medical devices through vulnerable areas. Research on medical information is proceeding on the necessity of privacy and privacy protection. However, there is a lack of research on the practical measures for protecting medical information and the seriousness of security threats. Therefore, in this study, we want to confirm the research trend by collecting data related to medical information in recent 5 years. In this study, smart medical related papers from 2014 to 2018 were collected using smart medical topics, and the medical information papers were rearranged based on this. Research trend analysis uses topic modeling technique for topic information. The result constructs topic network based on relation of topics and grasps main trend through topic.

On Practical Issue of Non-Orthogonal Multiple Access for 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.67-72
    • /
    • 2020
  • The fifth generation (5G) mobile communication has an impact on the human life over the whole world, nowadays, through the artificial intelligence (AI) and the internet of things (IoT). The low latency of the 5G new radio (NR) access is implemented by the state-of-the art technologies, such as non-orthogonal multiple access (NOMA). This paper investigates a practical issue that in NOMA, for the practical channel models, such as fading channel environments, the successive interference cancellation (SIC) should be performed on the stronger channel users with low power allocation. Only if the SIC is performed on the user with the stronger channel gain, NOMA performs better than orthogonal multiple access (OMA). Otherwise, NOMA performs worse than OMA. Such the superiority requirement can be easily implemented for the channel being static or slow varying, compared to the block interval time. However, most mobile channels experience fading. And symbol by symbol channel estimations and in turn each symbol time, selections of the SIC-performing user look infeasible in the practical environments. Then practically the block of symbols uses the single channel estimation, which is obtained by the training sequence at the head of the block. In this case, not all the symbol times the SIC is performed on the stronger channel user. Sometimes, we do perform the SIC on the weaker channel user; such cases, NOMA performs worse than OMA. Thus, we can say that by what percent NOMA is better than OMA. This paper calculates analytically the percentage by which NOMA performs better than OMA in the practical mobile communication systems. We show analytically that the percentage for NOMA being better than OMA is only the function of the ratio of the stronger channel gain variance to weaker. In result, not always, but almost time, NOMA could perform better than OMA.

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.

A Study on Smart Device for Open Platform Ontology Construction of Autonomous Vihicles (자율주행자동차 오픈플랫폼 온톨로지 구축을 위한 스마트디바이스 연구)

  • Choi, Byung Kwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • The 4th Industrial Revolution, intelligent automobile application technology is evolving beyond the limit of the mobile device to a variety of application software and multi-media collective technology with big data-based AI(artificial intelligence) technology. with the recent commercialization of 5G mobile communication service, artificial intelligent automobile technology, which is a fusion of automobile and IT technology, is evolving into more intelligent automobile service technology, and each multimedia platform service and application developed in such distributed environment is being developed Accordingly, application software technology developed with a single system SoC of a portable terminal device through various service technologies is absolutely required. In this paper, smart device design for ontology design of intelligent automobile open platform enables to design intelligent automobile middleware software design technology such as Android based SVC Codec and real time video and graphics processing that is not expressed in single ASIC application software technology as SoC based application designWe have experimented in smart device environment through researches, and newly designed service functions of various terminal devices provided as open platforms and application solutions in SoC environment and applied standardized interface analysis technique and proved this experiment.

Analysis on Achievable Data Rate of Asymmetric 2PAM for NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.34-41
    • /
    • 2020
  • Nowadays, the advanced smart convergences of the artificial intelligence (AI) and the internet of things (IoT) have been more and more important, in the fifth generation (5G) and beyond 5G (B5G) mobile communication. In 5G and B5G mobile networks, non-orthogonal multiple access (NOMA) has been extensively investigated as one of the most promising multiple access (MA) technologies. In this paper, we investigate the achievable data rate for the asymmetric binary pulse amplitude modulation (2PAM), in non-orthogonal multiple access (NOMA). First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM NOMA. Then it is shown that the achievable data rate of the asymmetric 2PAM NOMA reduces for the stronger channel user over the entire range of power allocation, whereas the achievable data rate of the asymmetric 2PAM NOMA increases for the weaker channel user improves over the power allocation range less than 50%. We also show that the sum rate of the asymmetric 2PAM NOMA is larger than that of the conventional standard 2PAM NOMA, over the power allocation range larger than 25%. In result, the asymmetric 2PAM could be a promising modulation scheme for NOMA of 5G systems, with the proper power allocation.

Achievable Sum Rate of NOMA with Negatively-Correlated Information Sources

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • As the number of connected smart devices and applications increases explosively, the existing orthogonal multiple access (OMA) techniques have become insufficient to accommodate mobile traffic, such as artificial intelligence (AI) and the internet of things (IoT). Fortunately, non-orthogonal multiple access (NOMA) in the fifth generation (5G) mobile networks has been regarded as a promising solution, owing to increased spectral efficiency and massive connectivity. In this paper, we investigate the achievable data rate for non-orthogonal multiple access (NOMA) with negatively-correlated information sources (CIS). For this, based on the linear transformation of independent random variables (RV), we derive the closed-form expressions for the achievable data rates of NOMA with negatively-CIS. Then it is shown that the achievable data rate of the negatively-CIS NOMA increases for the stronger channel user, whereas the achievable data rate of the negatively-CIS NOMA decreases for the weaker channel user, compared to that of the positively-CIS NOMA for the stronger or weaker channel users, respectively. We also show that the sum rate of the negatively-CIS NOMA is larger than that of the positively-CIS NOMA. As a result, the negatively-CIS could be more efficient than the positively-CIS, when we transmit CIS over 5G NOMA networks.

Framework for Reconstructing 2D Data Imported from Mobile Devices into 3D Models

  • Shin, WooSung;Min, JaeEun;Han, WooRi;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.6-9
    • /
    • 2021
  • The 3D industry is drawing attention for its applications in various markets, including architecture, media, VR/AR, metaverse, imperial broadcast, and etc.. The current feature of the architecture we are introducing is to make 3D models more easily created and modified than conventional ones. Existing methods for generating 3D models mainly obtain values using specialized equipment such as RGB-D cameras and Lidar cameras, through which 3D models are constructed and used. This requires the purchase of equipment and allows the generated 3D model to be verified by the computer. However, our framework allows users to collect data in an easier and cheaper manner using cell phone cameras instead of specialized equipment, and uses 2D data to proceed with 3D modeling on the server and output it to cell phone application screens. This gives users a more accessible environment. In addition, in the 3D modeling process, object classification is attempted through deep learning without user intervention, and mesh and texture suitable for the object can be applied to obtain a lively 3D model. It also allows users to modify mesh and texture through requests, allowing them to obtain sophisticated 3D models.

The Effect of Content Layout in Mobile Shopping Product Page on Product Attitude and Purchase Intention: Focusing on Consumer Cognitive Responses Depending on Regulatory Focus (모바일 쇼핑몰 상세페이지 콘텐츠 레이아웃 형태가 제품태도 및 구매의도에 미치는 영향: 조절초점에 따른 소비자 인지 반응 중심으로)

  • Park, Kyunghee;Seo, Bonggoon;Park, Dohyung
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.193-210
    • /
    • 2022
  • The rapid development of mobile technology and the improvement of network speed are providing convenience to various services, and mobile shopping malls are no exception. Although efforts are being made to promote sales by combining various technologies such as customized recommendations using big data and specialized personalization services based on artificial intelligence, most mobile shopping malls have the same detailed page information structure including detailed product information. In this context, in this study, it was determined that the content layout of the product detail page and the mobile product detail page layout tailored to the consumer's preference should be presented according to the consumer's preference. Based on Higgins' Regulatory Focus Theory, a study of consumer propensity revealed that the content layout arrangement on a product detail page, when presented in an F-shape, informs the consumer that it is organized. If presented in a Z-shape, vivid information was recognized, and it was examined whether the product attitude and purchase intention were affected. As a result, when the content layout composition was presented as a layout arrangement in the form of a sense of unity and organization, prevention-focused consumers were positively affected by product attitudes and purchase intentions, and promotion-oriented consumers felt freedom. When presented in an arrangement, it was confirmed that the product attitude and purchase intention were affected.

An One-stop mobile support system for the expression and spread of earthquake information based on evaluation (평가 기반 지진 정보 표출 및 확산을 위한 원스톱 모바일 지원 확산 시스템)

  • Lee, Yoonlae;Lee, Yunkyung;Jang, Yeonyi;Kim, Hyunah;Park, Minjae
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.43-50
    • /
    • 2021
  • As the frequency of earthquakes in some regions including Pohang City has increased in recent years, the need for countermeasures against earthquakes in Korea is demanded from various aspects. Liquefaction occurred after the earthquake, and local residents' anxiety increased due to the lack of preparation for and coping with the earthquake. In order to cope with these phenomena and relieve the anxiety of local residents, we analyze the limitations of the existing earthquake response system and come up with a method to solve them. Therefore, we propose, implement, and prove the possibility of a one-stop mobile support diffusion system capable of expressing and spreading evaluation-based earthquake information that can actively cope with disaster situations.

Cell ID Detection Schemes Using PSS/SSS for 5G NR System (5G NR 시스템에서 PSS/SSS를 이용한 Cell ID 검출 방법)

  • Ahn, Haesung;Kim, Hyeongseok;Cha, Eunyoung;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.870-881
    • /
    • 2020
  • This paper presents cell ID (cell identity) detection schemes using PSS/SSS (primary synchronization signal/secondary synchronization signal) for 5G NR (new radio) system and evaluates the detection performance. In this paper, we consider two cell ID detection schemes, i.e. two-stage detection and joint detection schemes. The two-stage detection scheme consists of two stages which estimate a channel gain between a transmitter and receiver and detect the PSS and SSS sequences. The joint detection scheme jointly detects the PSS and SSS sequences. In addition, this paper presents coherent and non-coherent combining schemes. The coherent scheme calculates the correlation value for the total length of the given PSS and SSS sequences, and the non-coherent combining scheme calculates the correlation within each group by dividing the total length of the sequence into several groups and then combines them non-coherently. For the detection schemes considered in this paper, the detection error rates of PSS, SSS and overall cell ID are evaluated and compared through computer simulations. The simulation results show that the joint detection scheme outperforms the two-stage detection scheme for both coherent and non-coherent combining schemes, but the two-stage detection scheme can greatly reduce the computational complexity compared to the joint detection scheme. In addition, the non-coherent combining detection scheme shows better performance under the additive white Gaussian noise (AWGN), fixed, and mobile environments.