• 제목/요약/키워드: Mo-Ti-Zr-C alloy

검색결과 19건 처리시간 0.027초

Mo-1.17 Ti-0.18 Zr-0.06 C 합금의 재결정거동에 관한 연구 (Recrystallization Behavior of Mo-1.17 Ti-0.18 Zr-0.06 C Alloy)

  • 윤국한;이종무;최주
    • 분석과학
    • /
    • 제5권3호
    • /
    • pp.319-325
    • /
    • 1992
  • 플라즈마 아크 용해법으로 이론밀도비 99% 이상인 Mo-1.17 Ti-0.18 Zr-0.06 C 잉고트를 제조하였다. 이때 산소함량은 초기 830ppm에서 40ppm으로 감소하였다. 열간단조 후, 50% 냉간 압연하여 두께 2mm의 판재를 만들어 시편으로 사용하였다. Mo 합금판재의 재결정거동을 조사하기 위하여 $800{\sim}2100^{\circ}C$ 구간에서 1시간 동안 등시열처리하였고, $1400^{\circ}C$, $1500^{\circ}C$, $1600^{\circ}C$에서 0~10800sec 동안 등온열처리하였다. 완전한 재결정은 Mo의 경우 $1400^{\circ}C$에서 종료되었으나 Mo 합금의 경우 $1700^{\circ}C$에서 완료되었다. 또한 Mo 합금의 50%-1시간 재결정온도는 약 $1500^{\circ}C$로서 Mo에 비하여 $300^{\circ}C$ 이상 증가된 것을 알 수 있었다. Mo 합금의 재결정에 필요한 활성화에너지는 508kJ/mol이었다.

  • PDF

미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동 (Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy)

  • 박찬희;이병갑;이종수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).

Quantitative Investigation of Grain Growth in Carbide Added(Mo$_2$C, ZrC and WC) to TiC-Ni Matrix Cermets

  • Kim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권1호
    • /
    • pp.19-26
    • /
    • 2004
  • The growth of solid particles in TiC-XC-2vo1.% and TiC-XC-30vo1.% Ni alloys, (where X=Zr, W or Mo) was fitted to the equation of the form $d^3$-${do}^3$=Kt during the liquid phase sintering at 1,673K. Also, the grain growth behavior decreased markedly with the addition of ${MO}_2$C or WC and increased with the addition of zrC. The contiguity was greater in the alloys with a smaller growth rate constant and especially, decreased by increasing the Ni content in the TiC-${MO}_2$C-Ni alloy. In addition, the effect of the addition of carbide on the grain growth of 2 vo1.% Ni alloys was found to be similar to that of 30vo1.% Ni alloys. Consequently, the grain growth mechanism cannot be explained by the usual solution / reprecipitation process, but can be explained in terms of a new growth velocity equation, which includes the effects of contiguous carbide grain boundaries in restricting the overall grain growth, as well as the area of the solid / liquid interface in the alloy.

생체용 Ti-Zr-Pd계 합금의 양극분극특성 (Anodic Polarization Properties of Ti-Zr-Pd Based Alloys for Biomedical Applications)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.21-30
    • /
    • 2001
  • For biomedical applications. Ti-X%Zr-Y%Pd(X: $10{\sim}20$, Y:0.2 or 0.4) based alloys not containing harmful Al and V were newly designed, and polarization curves for their alloys were measured at $37^{\circ}C$ in 5% HCl solution in order to understand effects of Zr on the corrosion. From the results of anodic polarization behavior, it was found that the corrosion resistance increased with increasing Zr content. The results show their potential to develope Ti-based alloys for biomedical materials. The Ti-20%Zr-0.2%Pd alloy shows excellent corrosion resistance and was superior to those of the Ti. Ti-6%Al-4%V ELI alloy, Co-30%Cr-6%Mo alloy and STS 316L stainless steel.

  • PDF

Ti-15Mo-5Zr-3Al 합금의 고온산화 (High Temperature Oxidation of Ti-15Mo-5Zr-3Al Alloy)

  • 우지호;김종성;백종현;이동복
    • 한국표면공학회지
    • /
    • 제31권5호
    • /
    • pp.278-285
    • /
    • 1998
  • Alloys of Ti-15Mo-5Zr-3Al(wt%) were oxidized in air between 700 and $900^{\circ}C$. It was found that the oxidation resistance is much better than that of either commercially available pure Ti-6Al-4V(wt%) alloys. The oxide scales were primarily composed of thick Ti-ox-ides which were formed by the inward diffusion of oxygen from the atmosphere. At higher temperatures a thin $\alpha$-$Al_2O_3$ layer was formed on Ti-oxides owing to the outward diffusion of Al from the base alloys. Molybdenum, the noblest metal among the alloy components, was predominantly present behind the oxide-substrate interface. Zirconium, an oxygen active metal, was present at both the oxide layer and the substrate.

  • PDF

Ti-6Al-2Sn-4Zr-6Mo 합금의 고온압축 변형거동 (High Temperature Compressive Deformation Behavior of Ti-6Al-2Sn-4Zr-6Mo Alloy)

  • 현용택;이용태;이찬규
    • 한국재료학회지
    • /
    • 제11권2호
    • /
    • pp.82-87
    • /
    • 2001
  • Ti-6Al-2Sn-4Zr-6Mo(Ti6246) 합금의 고온 변형거동을 조사하기 위하여 $\alpha$+$\beta$ 영역 및 $\beta$영역의 온도에서 $10^0s^{-1}$에서 $10^{-3}s^{-1}$의 변형속도로 압축시험을 수행하였다. 유동응력은 변형속도가 증가하고 시험 온도가 감소함에 따라 증가하였다 90$0^{\circ}C$ 이하에서 시험한 결과로부터 얻어진 유동곡선은 가공연화 현상을 나타내었으나, 이 합금의$\beta$영역인 95$0^{\circ}C$ 이상에서는 유동응력이 지속적으로 증가하다가 정상 상태를 나타냈다. 압축시험 결과로부터 얻은 유동곡선 분석을 통하여 유동응력의 변형량, 변형속도 및 온도에 대한 관계로부터 이 합금에 대한 구성방정식을 구하였다.

  • PDF

스프링용 Ti-3Al-8V-6Cr-4Mo-4Zr 타이타늄 합금의 시효열처리 최적화 (Aging Treatment Optimization of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy for Spring Application)

  • 윤창석;박양균;김종형;이수창;이동근
    • 열처리공학회지
    • /
    • 제30권6호
    • /
    • pp.279-284
    • /
    • 2017
  • Mechanical properties of titanium alloy can be improved by controlling microstructure through heat treatment. In this study, Ti-3Al-8V-6Cr-4Mo-4Zr metastable beta titanium alloy, was controlled for excellent mechanical property and sound formability through various high temperature heat treatment and aging conditions and the optimum heat treatment conditions were determined. The specimens were heat-treated at $950^{\circ}C$, followed by various aging treatments from $430^{\circ}C$ to $500^{\circ}C$ for 1 to 24 h. As aging temperature and holding time increased, hardness increased by ${\beta}^{\prime}$ phase formation and precipitation of secondary ${\alpha}$ phase in ${\beta}$ matrix. However, the optimum aging temperature and holding time for mechanical properties were at $450{\sim}470^{\circ}C$ for 8~16 hr. Hardness values of the specimen aged at $450^{\circ}C$ for 8 h were found to be the highest. These results can be effectively applied to fabrication of spring with better formability and mechanical property.

스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성 (Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering)

  • 우기도;김상미;김동건;김대영;강동수
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Antibacterial Properties of TiAgN and ZrAgN Thin Film Coated by Physical Vapor Deposition for Medical Applications

  • Kang, Byeong-Mo;Lim, Yeong-Seog;Jeong, Woon-Jo;Kang, Byung-Woo;Ahn, Ho-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.275-278
    • /
    • 2014
  • We deposited TiAgN and ZrAgN nanocomposite coatings on pure Titanium specimens, by using arc ion plating (AIP) with single alloy targets. TiAg ZrAg alloy targets of 5 wt.%, 10 wt.% silver content by vacuum arc remelting (VAR), followed by homogenization for 2 hours at $1,100^{\circ}C$ in non-active Ar gas atmosphere and characterized these samples for morphology and chemical composition. We investigated the biocompatibility of TiAg and ZrAg alloys by examining the proliferation of L929 fibroblast cells by MTT test assay, after culturing the cells ($4{\times}10^4cells/cm^2$) for 24 hours; and exploring the antibacterial properties of thin films by culturing Streptococus Mutans (KCTC3065), using paper disk techniques. Our results showed no cytotoxic effects in any of the specimens, but the antibacterial effects against Streptococus Mutans appeared only in the 10 wt.% silver content specimens.