• Title/Summary/Keyword: Mo electrode

Search Result 236, Processing Time 0.026 seconds

소다라임 유리기판상 CIGSe2 박막태양전지용 Mo 박막증착 및 MoSe2/Mo 박막특성 연구 (II)

  • Choe, Seung-Hun;Kim, Jin-Ha;Lee, Jong-Geun;Park, Jung-Jin;Jeong, Myeong-Hyo;Son, Yeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.291-291
    • /
    • 2012
  • 태양광 발전산업에서 현재 주류인 결정 실리콘 태양전지의 변환효율은 꾸준히 향상되고 있으나, 태양전지의 가격이 매년 서서히 하강되고 있는 실정에서 결정질 실리콘 가격의 상승 등으로 부가가치 창출에 어려움이 있으며, 생산 원가를 낮출 수 있는 태양전지 제조기술로는 2세대 태양전지로 불리는 박막형이 현재의 대안이며, 특히 에너지 변환 효율과 생산 원가에서 장점이 있는 것이 CIGS 박막 태양전지로 판단된다. 화합물반도체 베이스인 CIGS 박막태양전지는 연구실에서는 세계적으로 20.3% 높은 효율을 보고하고 있으며, 모듈급에서도 13% 효율로 생산이 시작되고 있다. 국내에서도 연구실 규모뿐만 아니라 대면적(모듈급) CIGS 박막 태양전지 증착용 장비, 제조공정 등의 기술개발이 진행되고 있다. CIGSe2를 광흡수층으로 하는 CIGSe2 박막 태양전지의 구조는 여러 층의 단위박막(하부전극, 광흡수층, 버퍼층, 상부투명전극)을 순차적으로 형성시켜 만든다. 이중에 하부전극은 Mo 재료을 스퍼터링 방법으로 증착하여 주로 사용한다. 하부전극은 0.24 Ohm/cm2 정도의 전기적 특성이 요구되며, 주상조직으로 성장하여야 하며, 고온 안정성 확보를 위하여 기판과의 밀착성이 좋아야하고 또한 레이저 패턴시 기판에서 잘 떨어져야 하는 특성을 동시에 가져야 한다. 그리고 CIGSe2의 광흡수층 제조시 셀렌화 공정에서 100 nm 이하의 MoSe2 두께를 갖도록 해야하며, 이는 CIGSe2 박막태양전지의 Rs 값을 줄여 Ohmic 접촉을 향상시키는데 기여한다. 본 연구에서는 CIGSe2 박막태양전지에서 요구되는 하부 전극 Mo 박막의 제작과 CIGSe2 박막태양전지 전체공정에 적용후의 MoSe2/Mo 박막특성에 대해서 연구결과들을 논하고자 한다. (본 연구는 경북그린에너지프론티어기업발굴육성사업 연구지원금으로 이루어졌음).

  • PDF

Using a Bismuth-film Glassy Carbon Electrode Based on Anodic Stripping Voltammetry to Determine Cadmium and Lead in a Standard Rice Flour (양극벗김전위법 비스무스막 유리탄소전극을 이용한 표준 쌀 분말 내 카드뮴과 납 측정)

  • Kim, Hak-Jin;Son, Dong-Wook;Mo, Chang-Yeon;Han, Jae-Woong;Kim, Gi-Young;Park, Sang-Won;Om, Ae-Son
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.377-381
    • /
    • 2009
  • Excessive presence of heavy metals in environment may contaminate plants and fruits grown in that area. Rapid on-site monitoring of heavy metals can provide useful information to efficiently characterize heavy metal-contaminated sites and minimize the exposure of the contaminated food crops to humans. This study reports on the evaluation of a bismuth-coated glassy carbon electrode for simultaneous determination of cadmium (Cd) and lead (Pb) in a NIST-SRM 1568a rice flour by anodic stripping voltammetry (ASV). The use of a supporting electrolyte 0.1 M $HNO_3$ at a dilution ratio (sample pretreated with acid digestion in a microwave oven: supporting electrolyte) of 1:1 provided well-defined, sharp and separate peaks for Cd and Pb ions, thereby resulting in strongly linear relationships between Cd and Pb concentrations and peak currents measured with the electrode ($R^2\;=\;0.97$, 0.99 for Cd and Pb, respectively). The validation test results for spiked standard solutions with different concentrations of Cd and Pb gave acceptable predictability for both spiked Cd and Pb ions with mean prediction errors of 6 to 30%. However, the applicability of the electrode to the real rice flour sample was limited by the fact that Cd concentrations spiked in the rice flour sample were overly estimated with relatively high variations even though Pb ion could be quantitatively measured with the electrode.

Analysis on the dielectric characteristics of a composite insulation system composed of LN2 and GN2

  • Kim, Junil;Lee, Onyou;Mo, Young Kyu;Bang, Seungmin;Kang, Jong O;Lee, Hongseok;Nam, Seokho;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • A liquid nitrogen ($LN_2$) is usually used to be a coolant and insulant for a HTS coil system. HTS wires for a superconducting apparatus may be surrounded by gaseous nitrogen ($GN_2$) due to film boiling generated by a quench or voids occurred by electrical breakdown. The increased maximum electric field intensity at $GN_2$ may result in the degradation of dielectric strength of a HTS coil system. In this paper, a study on the dielectric characteristics of a composite insulation system composed of $LN_2$ and $GN_2$ is performed. A sphere-to-plane electrode system made with stainless steel is used to perform the experiments under AC and lightning impulse voltage condition. A sphere electrode is surrounded by $GN_2$ and a plane electrode is immersed into $LN_2$ to conduct dielectric experiments with a composite insulation system. The dielectric experiments are performed according to the level of $LN_2$ from the plane electrode to a sphere electrode. It is found that the dielectric characteristics of a composite insulation system are dependent on the level of $LN_2$ and the field utilization factor of an electrode system.

Electrochemical Properties of 0.3Li2MnO3·0.7LiMn0.55Ni0.30Co0.15O2 Electrode Containing VGCF for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Minchan;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.32-36
    • /
    • 2014
  • The $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material was prepared via a co-precipitation method. The vapor grown carbon fiber (VGCF) was used as a conductive material and its effects on electrochemical properties of the $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material were investigated. From the XRD pattern, the typical complex layered structure was confirmed and a solid solution between $Li_2MnO_3$ and $LiMO_2$ (M = Ni, Co and Mn) was formed without any secondary phases. The VGCF was properly distributed between cathode materials and conductive sources by a FE-SEM. In voltage profiles, the electrode with VGCF showed higher discharge capacity than the pristine electrode. At a 5C rate, 146 mAh/g was obtained compared with 232 mAh/g at initial discharge in the electrode with VGCF. Furthermore, the impedance of the electrode with VGCF did not changed much around $9-10{\Omega}$ while the pristine electrode increased from 21.5${\Omega}$ to $46.3{\Omega}$ after the $30^{th}$ charge/discharge cycling.

Study of Pulse Generation Technique for Serial dual Electrode Detection of Amino Acids and Proteins in Flow Injection Analysis

  • Fung, Ying-Sing;Mo, Song-Ying
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.575-582
    • /
    • 1995
  • A new analytical procedure using a serial dual electrode detector was developed for the analysis of amino acids and proteins. Bromine was generated at the upstream electrode and detected by the downstream electrode. The presence of amino acids and proteins was shown to lower the downstream current but with no apparent effect on the upstream current. This indirect mode of detection can be applied to the determination of amino acids and proteins which are electrochemically inactive or too large to be accessible to the electrode surface for electron exchange. The method is shown capable to determine various amino acids (cystine, tyrosine, lysine, tryptophan, glycine, methionine and arginine) and proteins (cytochrome c, hemoglobin, HAS, a-Amylase, Conalbumin I, Catalase and Myglobin) with linear working range for amino acids between $10^{-6}$ to $10^{-3}M$ and total proteins between $10^{-7}$ to $10^{-3}M$. The method has been applied for the analysis of amino acids and total protein in food using Flow Injection Analysis with results obtained comparable to those using the traditional analytical procedure. Use of pulse generation technique was shown to produce a more stable flow injection analysis peaks for repetitive determination than the use of conventional constant current method which showed increase of the background current after determination over 200 minutes. The pulse method was found to give stable baseline even after 400 minutes. Thus, the method is shown able to provide a suitable analytical procedure for automatic analysis of amino acids and proteins in food by flow injection analysis.

  • PDF

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries (Mo2C/Mo2N 나노 입자와 환원된 그래핀 옥사이드가 복합된 나노 섬유 중간층이 적용된 리튬-황 전지)

  • Lee, Jae Seob;Yang, Ji Hoon;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.574-581
    • /
    • 2022
  • Nanofibers comprising reduced graphene oxide (rGO) and Mo2C/Mo2N nanoparticles (Mo2C/Mo2N rGO NFs) were prepared for a functional interlayer of Li-S batteries (LSBs). The well-dispersed Mo2C and Mo2N nanoparticles in the nanofiber structure served as active polar sites for efficient immobilization of dissolved lithium polysulfide. The rGO nanosheets in the structure also provide conductive channels for fast ion/electron transport during charging-discharging and ensured reuse of lithium polysulfide during redox reactions through a fast charge transfer process. As a result, the cell assembled with Mo2C/Mo2N rGO NFs-coated separator and pure sulfur electrode (70 wt% of sulfur content and 2.1 mg cm-2 of sulfur loading) showed a stable discharge capacity of 476 mA h g-1 after 400 charge-discharge cycles at 0.1 C. Furthermore, it exhibited a discharge capacity of 574 mA h g-1 even at a high current density of 1.0 C. Therefore, we believe that the proposed unique nanostructure synthesis strategy could provide new insights into the development of sustainable and highly conductive polar materials as functional interlayers for high performance LSBs.

Manufacture of Pt-transition Metal Alloy Catalyst for PAFC (PAFC용 합금 촉매 제조)

  • Kim, Yeong-Woo;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.692-700
    • /
    • 1993
  • Corrosivities and catalytic activities of platinum-transition metal alloy catalyses loaded on carbon substrate and were studied by electrochemical method using a unit cell. And the analysis of Pt-alloy catalyst was conducted by x-ray diffractometer. Among the catalysts, the Pt-Mo/carbon, Pt-Fe-Co/carbon and Pt-Fe/carbon catalyst showed more excellent cathodic current densities than others. It was found that most of cathodic current density for the Pt-Mo/carbon electrode was $120mA/cm^2$. The current density of the Pt-Fe-Co/carbon was much higher than that of Pt/carbon, reaching $200mA/cm^2$.

  • PDF

Study on Micro Dried Bio-potential Electrodes Using Conductive Epoxy on Textile Fabrics (전도성 에폭시를 이용한 직물 위에 구현된 건식 생체전위 전극의 연구)

  • Cha, Doo-Yeol;Jung, Jung-Mo;Kim, Deok-Su;Yang, Hee-Jun;Choi, Kyo-Sang;Choi, Jong-Myong;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • In this paper, micro dried bio-potential electrodes are demonstrated for sEMG (surface ElectroMyoGraphic) signal measurement using conductive epoxy on the textile fabric. Micro dried bio-potential electrodes on the textile fabric substrate have several advantages over the conventional wet/dry electrodes such as good feeling of wearing, possibility of extended-wearing due to the good ventilation. Also these electrodes on the textile fabric can easily apply to the curved skin surface. These electrodes are fabricated by the screen-printing process with the size of $1mm{\times}10mm$ and the resultant resistance of these electrodes have the average value of $0.4{\Omega}$. The conventional silver chloride electrode shows the average value of $0.3{\Omega}$. However, the electrode on the textile fabric are able to measure the sEMG signal without feeling of difference and this electrode shows the lower resistance of $1.03{\Omega}$ than conventional silver chloride electrode with $2.8{\Omega}$ in the condition of the very sharp curve surface (the radius of curvature is 40 mm).