• Title/Summary/Keyword: MnSOD gene

Search Result 40, Processing Time 0.023 seconds

Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

  • Baek, Kwang-Hyun;Skinner, Daniel Z.
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese superoxide dismutase (MnSOD) gene isolated from wheat. Although all QC 871 transformants grown at $37^{\circ}C$ expressed mRNA of MnSOD variants, only MnSOD2 transformant had functional SOD activity. MnSOD3 expressed active protein when grown at $22^{\circ}C$, however, MnSOD1 did not express functional protein at any growing and induction conditions. The sequence comparison of the wheat MnSOD variants revealed that the only amino acid difference between the sequence MnSOD2 and sequences MnSOD1 and 3 is phenylalanine/serine at position 58 amino acid. We made MnSOD2S58F gene, which was made by altering the phenylalaine to serine at position 58 in MnSOD2. The expressed MnSOD2S58F protein had functional SOD activity, even at higher levels than the original MnSOD2 at all observed temperatures. These data suggest that amino acid variation can result in highly active forms of MnSOD and the MnSOD2S58F gene can be an ideal target used for transforming crops to increase tolerance to environmental stresses.

Superoxide Dismutase Gene Expression Induced by Lipopolysaccharide in Alveolar Macrophage of Rat (폐포대식세포에서 내독소 자극에 의한 Superoxide Dismutase 유전자발현의 조절 기전)

  • Park, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Hyun, In-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.522-534
    • /
    • 1995
  • Background: In the pathogenesis of acute lung injury induced by lipopolysaccharide(LPS), oxygen radiclls are known to be involved in one part. Superoxide dismutase(SOD) protects oxygen radical-induced tissue damage by dismutating superoxide to hydrogen peroxide. In eukaryotic cells, two forms of SOD exist intracellularly as a cytosolic, dimeric copper/zinc-containing SOD(CuZnSOD) and a mitochondrial, tetrameric manganese-containing SOD(MnSOD). But there has been little information about SOD gene expression and its regulation in pulmonary alveolar macrophages(PAMs). The objective of this study is to evaluate the SOD gene expression induced by LPS and its regulation in PAMs of rat. Method: In Sprague-Dawley rats, PAMs obtained by broncholaveolar lavage were purified by adherence to plastic plate. To study the effect of LPS on the SOD gene expression of PAMs, they were stimulated with different doses of LPS($0.01{\mu}g/ml{\sim}10{\mu}g/ml$) and for different intervals(0, 2, 4, 8, 24hrs). Also for evaluating the level of SOD gene regulation actinomycin D(AD) or cycloheximide(CHX) were added respectively. To assess whether LPS altered SOD mRNA stability, the rate of mRNA decay was determined in control group and LPS-treated group. Total cellular RNA extraction by guanidinium thiocyanate/phenolfchlorofonn method and Northern blot analysis by using a $^{32}P$-labelled rat MnSOD and CuZnSOD cDNAs were performed. Results: The expression of mRNA in MnSOD increased dose-dependently, but not in CuZnSOD. MnSOD mRNA expression peaked at 8 hours after LPS treatment. Upregulation of MnSOD mRNA expression induced by LPS was suppressed by adding AD or CHX respectively. MnSOD mRNA stability was not altered by LPS. Conclusion: These findings show that PAMs of rat could be an important source of SOD in response to LPS, and suggest that their MnSOD mRNA expression may be regulated transcriptionally and require de novo protein synthesis without affecting mRNA stability.

  • PDF

Molecular Cloning and Characterization of Mn-Superoxide Dismutase Gene from Candida sp.

  • Hong, Yun-Mi;Nam, Yong-Suk;Choi, Soon-Yong
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 1997
  • The manganese-containing superoxide dismutase (MnSOD) is a major component of the cellular defence mechanisms against the toxic effects of the superoxide radical. Within the framework of studies on oxidative stress=responsible enzymes in the Candida sp., the gene encoding the MnSOD was isolated and examined in this study. A specific primer was designed based on conserved regions of MnSOD sequences from other organisms, and was used to isolate the gene by PCR on reverse-transcribed Candida poly($A^{+}$) RNA. The PCR product was used to screen a Candida genomic lambda library and the nucleotide wequence of positive clone was determined. The deduced primary sequence encodes a 25kDa protein which has the conserved residues for enzyme activity and metal binding. The 28 N-terminal amino acids encoded by the Candida cDNA comprise a putatice mitochondrial transit peptide. Potential regulatory elements were identified in the 5' flanking sequences. Northern blot analysis showed that the transcription of the MnSOD gene is induced 5-to 10-fold in response to mercury, cadmium ions and hydrogen peroxide.

  • PDF

Manganese Superoxide Dismutase (MnSOD Val-9Ala) Gene Polymorphism and Susceptibility to Gastric Cancer

  • Moradi, Mohammad-Taher;Yari, Kheirollah;Rahimi, Zohreh;Kazemi, Elham;Shahbazi, Mehrdad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.485-488
    • /
    • 2015
  • Background: Oxidative stress caused by the generation of reactive oxygen species plays an important role in human carcinogenesis. Manganese superoxide dismutase (MnSOD) Val-9Ala in the mitochondrial target sequence is the best known polymorphism of this enzyme. The purpose of the current research was to assess the association of MnSOD Val-9Ala genotypes with the risk of gastric cancer. Materials and Methods: This case-control study covered 54 gastric cancer patients compared to 100 cancer free subjects as controls. Extraction of DNA was performed on bioptic samples and genotypes were identified with a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: The frequencies of MnSOD Ala/Ala, Ala/Val and Val/Val genotypes in healthy individuals were 24.3, 66.7 and 9%, respectively. However, in gastric cancer patients, Ala/Ala, Ala/Val and Val/Val were observed in 24.0, 48.0 and 28.0% (p=0.01). In patients the frequency of MnSOD Val allele was higher (52%) compared to that in controls (42%). Conclusions: The results of this study show a positive association between MnSOD Val-9Ala gene polymorphism and risk of gastric cancer disease in Iranian population.

The Role of MnSOD in the Mechanisms of Acquired Resistance to TNF (TNF에 대한 내성획득에서 MnSOD의 역할에 관한 연구)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1353-1365
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF -resistance in TNF-$\alpha$ cDNA transfected cancer cells would be. an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate the role of MnSOD, an antioxidant enzyme, in the acquired resistance to TNF of TNF-$\alpha$ cDN A transfected cancer cells. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, ELISA, MIT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and the changes of MnSOD mRNA expressions with Northern blot analysis. Results : The MnSOD mRNA expressions of parental cells and genetically modified cells of WEHI164 and ME180 cells(both are naturally TNF sensitive) were not significantly different The MnSOD mRNA expressions of genetically modified cells of NCI-H2058 and A549(both are naturally TNF resistant) were higher than those of the parental cells, while those of parental cells with exogenous TNF were also elevated. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the MnSOD expression, but the difference in natural TNF sensitivity of each cell may be associated with the level of the MnSOD expression.

  • PDF

Identification and Molecular Characterization of Superoxide Dismutase Genes in Pseudomonas rhodesiae KK1 Capable of Polycyclic Aromatic Hydrocarbon Degradation (PAH를 분해할 수 있는 Pseudomonas rhodesiae KK1의 SOD 유전자의 동정 및 분자학적 특성 분석)

  • Lee, Dong-Heon;Oh, Kye-Heon;Kim, Seung Il;Kahng, Hyung-Yeel
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • Pseudomonas rhodesiae KK1 has been reported to degrade polycyclic aromatic hydrocarbons (PAHs), such as anthracene, naphthalene, and phenanthrene, which are considered major environmental contaminants. Interestingly, antioxidant genes, including superoxide dismutase, are known to be expressed at different levels in response to environmental contaminants. This study was performed to identify the superoxide dismutase gene in strain KK1, which may be indirectly involved with degradation of PAHs, as well as to investigate the expression pattern of the superoxide dismutase gene in cells grown on different PAHs. Two types of superoxide dismutase genes responsible for the antioxidant defense mechanism, Mn-superoxide dismutase (sodA) and Fe-superoxide dismutase (sodB), were identified in P. rhodesiae KK1. The sodA gene in strain KK1 shared 95% similarity, based on 141 amino acids, with the Mn-sod of P. fluorescens Pf-5. The sodB strain, based on 135 amino acids, shared 99% similarity with the Fe-sod of P. fluorescens Pf-5. Southern hybridization using the sod gene fragment as a probe showed that at least two copies of superoxide dismutase genes exist in strain KK1. RT-PCR analysis revealed that the sodA and sodB genes were more strongly expressed in response to naphthalene and phenanthrene than to anthracene. Interestingly, sodA and sodB activities were revealed to be maintained in cells grown on all of the tested substrates, including glucose.

Isolation and Characterization of the sod2$^{2+}$ Gene Encoding a Putative Mitochondrial Manganese Superoxide Dismutase in Schizosaccharomyces bombe

  • Jeong, Jae-Hoon;Kwon, Eun-Soo;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • The fission yeast Schizosaccharomyces pombe contains two distinct superoxide dismutase (SOD) activities, one in the cytosol encoded by the $sod2^{+}$ gene and the other in mitochondria. The $sod2^{+}$ gene encoding putative mitochondrial manganese superoxide dismutase (MnSOD) was isolated from the S. pombe genomic library using a PCR fragment as the probe. The nucleotide sequence of the $sod2^{+}$ gene and its flanking region (4051 bp HindIII fragment) was determined. An intron of 123 nt in size was predicted and confirmed by sequencing the cDNA following reverse transcription PCR. The predicted Sod2p consists of 218 amino acid residues with a molecular mass of 24,346 Da. The deduced amino acid sequence showed a high degree of homology with other MnSODs, especially in the metal binding residues at the active site and their relative positions. The transcriptional start site was mapped by primer extension at 231 at upstream from the ATG codon. A putative TATA box(TATAAAA) was located 58 nt upstream from the transcriptional start site and putative polyadenylation sites were located at 1000, 1062, and 1074 nt downstream from the ATG start codon.

  • PDF

Different Association of Manganese Superoxide Dismutase Gene Polymorphisms with Risk of Prostate, Esophageal, and Lung Cancers: Evidence from a Meta-analysis of 20,025 Subjects

  • Sun, Guo-Gui;Wang, Ya-Di;Lu, Yi-Fang;Hu, Wan-Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1937-1943
    • /
    • 2013
  • Altered expression or function of manganese superoxide dismutase (MnSOD) has been shown to be associated with cancer risk but assessment of gene polymorphisms has resulted in inconclusive data. Here a search of published data was made and 22 studies were recruited, covering 20,025 case and control subjects, for meta-analyses of the association of MnSOD polymorphisms with the risk of prostate, esophageal, and lung cancers. The data on 12 studies of prostate cancer (including 4,182 cases and 6,885 controls) showed a statistically significant association with the risk of development in co-dominant models and dominant models, but not in the recessive model. Subgroup analysis showed there was no statistically significant association of MnSOD polymorphisms with aggressive or nonaggressive prostate cancer in different genetic models. In addition, the data on four studies of esophageal cancer containing 620 cases and 909 controls showed a statistically significant association between MnSOD polymorphisms and risk in all comparison models. In contrast, the data on six studies of lung cancer with 3,375 cases and 4,050 controls showed that MnSOD polymorphisms were significantly associated with the decreased risk of lung cancer in the homozygote and dominant models, but not the heterozygote model. A subgroup analysis of the combination of MnSOD polymorphisms with tobacco smokers did not show any significant association with lung cancer risk, histological type, or clinical stage of lung cancer. The data from the current study indicated that the Ala allele MnSOD polymorphism is associated with increased risk of prostate and esophageal cancers, but with decreased risk of lung cancer. The underlying molecular mechanisms warrant further investigation.

Bidirectional Regulation of Manganese Superoxide Dismutase (MnSOD) on the Radiosensitivity of Esophageal Cancer Cells

  • Sun, Guo-Gui;Hu, Wan-Ning;Wang, Ya-Di;Yang, Cong-Rong;Lu, Yi-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3015-3023
    • /
    • 2012
  • The mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) may represent a new type of tumor suppressor protein. Overexpression of the cDNA of this gene by plasmid or recombinant lentiviral transfection in various types of cancer leads to growth suppression both in vitro and in vivo. We previously determined that changes in MnSOD expression had bidirectional effects on adriamycin (ADR) when combined with nitric oxide (NO). Radiation induces free radicals in a manner similar to ADR, so we speculated that MnSOD combined with NO would also have a bidirectional effect on cellular radiosensitivity. To examine this hypothesis, TE-1 human esophageal squamous carcinoma cells were stably transfected using lipofectamine with a pLenti6-DEST plasmid containing human MnSOD cDNA at moderate to high overexpression levels or with no MnSOD insert. Blastidicin-resistant colonies were isolated, grown, and maintained in culture. We found that moderate overexpression of MnSOD decreased growth rates, plating efficiency, and increased apoptosis. However, high overexpression increased growth rates, plating efficiency, and decreased apoptosis. When combined with NO, moderate overexpression of MnSOD increased the radiosensitivity of esophageal cancer cells, whereas high MnSOD overexpression had the opposite effect. This finding suggests a potential new method to kill certain radioresistant tumors and to provide radioresistance to normal cells.

Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of Pyropia yezoensis (Bangiales, Rhodophyta) APX and MnSOD in Chlamydomonas

  • Lee, Hak-Jyung;Yang, Ho yeon;Choi, Jong-il
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1217-1224
    • /
    • 2018
  • Seaweeds produce antioxidants to counteract environmental stresses, and these antioxidant genes are regarded as important defense strategies for marine algae. In this study, the expression of Pyropia yezoensis (Bangiales, Rhodophyta) ascorbate peroxidase (PyAPX) and manganese-superoxide dismutase (PyMnSOD) was examined by qRT-PCR in P. yezoensis blades under abiotic stress conditions. Furthermore, the functional relevance of these genes was explored by overexpressing them in Chlamydomonas. A comparison of the different expression levels of PyAPX and PyMnSOD after exposure to each stress revealed that both genes were induced by high salt and UVB exposure, being increased approximately 3-fold after 12 h. The expression of the PyAPX and PyMnSOD genes also increased following exposure to $H_2O_2$. When these two genes were overexpressed in Chlamydomonas, the cells had a higher growth rate than control cells under conditions of hydrogen peroxide-induced oxidative stress, increased salinity, and UV exposure. These data suggest that Chlamydomonas is a suitable model for studying the function of stress genes, and that PyAPX and PyMnSOD genes are involved in the adaptation and defense against stresses that alter metabolism.