• 제목/요약/키워드: Mn-Zn ferrite

검색결과 196건 처리시간 0.034초

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo;Lee, Young Bae;Kwon, Woo Hyun;Kang, Jeoung Yun;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.308-314
    • /
    • 2016
  • Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.

휴대전화용 전파흡수체에 있어서 페라이트 입자 크기의 제어에 따른 전파흡수특성 (Absorption Properties according to Particle Size of Ferrite in EM Wave Absorber for Mobile Phone)

  • 송재만;김동일;김수정;옥승민;김보영;박우근;이영구;윤현진;김기만
    • 한국전자파학회논문지
    • /
    • 제14권3호
    • /
    • pp.290-295
    • /
    • 2003
  • Sheet형 전파흡수체를 제작하여 Mn-Zn페라이트의 입자크기에 따른 전파흡수능의 관계를 조사하였다. 입자 크기가 증가함에 따라 정합주파수는 낮은 쪽으로 이동하였으며, 정합주파수에서 전파흡수능은 감소하였다. 하지만 휴대폰의 사용주파수인 0.8 ㎓와 1.8 ㎓에서는 입자의 크기가 큰 것으로 구성되어 있는 전파흡수체자 작은 입자로 구성되어 있는 전파흡수체보다 우수한 전파흡수능을 나타내었다. 따라서 휴대폰용 전파흡수체를 Mn-Zn 페라이트 파우더로 제작할 경우에는 입자의 크기가 큰 것이 바람직하다고 생각된다.

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

공침법에 의한 MnZn Ferrite 분말제조 연구 (MnZn Ferrite Preparation by Coprecipitation Method)

  • 엄태형;고성만;서동수;양준환;박균하
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.478-484
    • /
    • 1993
  • The influence of reaction conditions on the MnZn ferrite coprecipitation process were investigated using mixed metla sulfate solution and ammonium oxalate. In order to minimize the metallic ion losses and to control the particle size, the optimum reaction conditions were as follows; reaction temperature $25^{\circ}C$, metal sulfate concentration 0.3M, molar ratio of ammonium oxalate/mixed metal sulfate 1.1:1. The production yield was as high as 97.6% of theoretical yield at optimum reaction condition.

  • PDF

$Fe_2O_3$ 미량 변화에 따른 Mn-Zn 페라이트 단결정의 전자기적 특성 (Electro-Magnetic Properties of Mn-Zn Ferrite Single Crystal with Small Variation of $Fe_2O_3$ Concentration)

  • 제해준;변순천;홍국선;장성도
    • 한국세라믹학회지
    • /
    • 제30권10호
    • /
    • pp.791-796
    • /
    • 1993
  • The electro-magnetic properties of the Mn-Zn ferrite single crystal with small variation of Fe2O3 concentration at the high permeability composition, 53mol% Fe2O3-28.5mol% MnO-18.5mol% ZnO, have been studied for the VCR magnetic head application. With the increase of the Fe2O3 concentration, the Fe2+ concentration increased, the specific resistivity decreased, the secondary maximum permeability shifted to the lower temperature, and the initial permeability decreased. It was concluded that the small variation of $\pm$0.5mol% Fe2O3 concentration greatly affected the electro-magnetic properties of Mn-Zn ferrite single crystals. At the composition of 53mol% Fe2O3, the initial permeability was comparatively high (650 at 5MHz) and its temperature dependence was small.

  • PDF

옻을 지지재로 이용한 복합형 전자파 흡수체의 제작 (Manufacture of Composite Electromagnetic Absorber using Natural Lacquer Binder)

  • 김동일;최동한;김수정;박우근;송재만;김민정
    • 한국전자파학회논문지
    • /
    • 제14권7호
    • /
    • pp.756-761
    • /
    • 2003
  • 고성능 광대역 복합형 전자파 흡수체를 개발하기 위해 지금까지 지지재로 주로 사용되어오던 Silicone과 CPE 그리고 본 연구에서 새롭게 제안하는 전통 옻에서 사용되어 오던 옻에 대한 전자파 흡수능을 조사하였다. 또한 이들과 MnZn 페라이트를 혼합한 전자파 흡수체를 제작하여 이들의 전자파 흡수능을 조사하였다. 옻을 지지재로 한 MnZn 페라이트 복합형 전자파 흡수체는 CPE와 Silicone을 지지재로 한 전자파 흡수체에 비하여 광대역에서 우수한 전파흡수특성을 나타내었다.

Mn-Zn 페라이트의 레이저 유도 열화학 습식식각 (Laser-Induced Thermochemical Wet Etching of Mn-Zn Ferrite)

  • 이경철;이천
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권7호
    • /
    • pp.668-673
    • /
    • 1997
  • A Single-crystalline Mn-Zn Ferrite (110 orientation) was masklessly etched by focused Ar laser irradiation in an H$_3$PO$_4$ solution. The depth of the etched grooves increases with increasing a laser power, decreasing a scan speed, and increasing the H$_3$PO$_4$concentration. The width of the etched grooves increases with a increasing laser power, but was relatively insensitive to the scan speed and H$_3$PO$_4$concentration. High etching rate of up to 714 ${\mu}{\textrm}{m}$/s and an aspect ratio of 6 for vertical slab structure have been obtained by the light-guiding effect of the laser bean in the H$_3$PO$_4$ solution.

  • PDF

공침법에 의한 $Mn_{0.5}Zn_{0.5}$ Ferrite 분말제조연구 (Preparation of $Mn_{0.5}Zn_{0.5}$ Ferrite Powder by Coprecipition Process)

  • 엄태형;서동수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1991년도 추계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 1991
  • For its outstanding magnetic property, preparations of MnZn ferrite were studied with various method. In this study, MnZn ferrite powders were prepared from ammonium oxalate and mixed metal sulfate by the controlled coprecipitation process. Considering to low dissolved each metal ion, high production yield and particle size, the established optimum reaction conditon by the statistical analysis of each results are that reaction temperature is $25^{\circ}C$, concentration of metal sulfate is 0.3M, molar ratio of ammonium oxalate/metal sulfate is 1.1:1. The effective experimental factor and characterization of the precipitated powder at optimum condition were studied.