• 제목/요약/키워드: Mn-Fe ferrite

검색결과 109건 처리시간 0.03초

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

알콜탈수법에 의한 Mn-Zn Ferrite 분체제조 및 소결특성 (Synthesis of Mn-Zn Ferrite Powder by Alcoholic Dehydration and Properties of Sintered Body)

  • 이대희;김창현;이병교
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.843-849
    • /
    • 1998
  • Fine powders of Mn-Zn ferrite were prepared by the alcoholic dehydration method and densification beha-vior of synthesized powder was investigated. The concentration and pH of solution for optimal precipitation was 0.4M and 2.5 respectively. The spinel single phase metastable state was formed by thermal decom-position of precipitate and then spinel phase was disintegrated into hematite and spinel {{{{ { { ZnFe}_{2 }O }_{4 } }} at 600$^{\circ}C$ With increase of temperature reaction of solid solution between hematite and spinel was proceeded and resulted in the spinel single phase (Mn, Zn Fe){{{{ { {Fe }_{2 }O }_{4 } }} On account of high reactivity of uncalcined powders densification started at 200$^{\circ}C$ lower and completed at 50$^{\circ}C$ lower in comparison with calcined powders.

  • PDF

NiZn Ferrite Coating for Electrical Insulation of MnZn Ferrite Cores

  • Kitamoto, Y.;Yajima, H.;Nakayama, Y.;Abe, M.
    • 한국세라믹학회지
    • /
    • 제38권6호
    • /
    • pp.506-508
    • /
    • 2001
  • The ferrite plating with applying power ultrasound waves of 19.5 kHz and 600W enabled us to encapsulate entirely MnZn ferrite cores for transformers with Ni$\sub$x/Zn$\sub$y/Fe$\sub$3-x-y/O$_4$coating. Supplying a NH$_4$OH solution during the plating broke the limit of the solubility of Ni ions to ferrite-plated films. The electrical resistivity of the NiZn ferrite coating increased with increasing the Ni and Zn content, reaching 2.3${\times}$10$\^$5/Ωcm at the composition of Ni$\sub$0.24/Zn$\sub$0.30/Fe$\sub$2.46/O$_4$. The saturation magnetization was 540 emu/㎤. As a result, the MnZn ferrite cores were successfully encapsulated with the NiZn ferrite coatings for an insulation layer.

  • PDF

폐기물 페라이트를 이용한 CO2분해 (CO2 Decomposition with Waste Ferrite)

  • 신현창;김진웅;최정철;정광덕;최승철
    • 한국세라믹학회지
    • /
    • 제40권2호
    • /
    • pp.146-152
    • /
    • 2003
  • 지구온난화의 주요 원인인 $CO_2$를 분해시키기 위하여 Ni-Zn 페라이트와 Mn-Zn 페라이트 코어 제조시 대량으로 배출되는 페라이트 폐기물을 이용하였다. 폐기물 페라이트와 페라이트 코어 완제품인 Ni-Zn 페라이트와 Mn-Zn 페라이트는 5% $H_2$/Ar과의 환원반응에서 14~16wt%가 환원되었다. 환원된 페라이트를 이용한 $CO_2$분해 반응에서는 세 종류의 페라이트 모두 약 11wt%에 해당하는 $CO_2$를 분해하였다. 이 반응에서 $CO_2$는 환원된 페라이트 중 Fe와 FeO치 산화에 의해 분해되었으며. 폐기물 페라이트의 경우 $CO_2$분해 반응 후 스피넬 결정상을 형성하였다. 대량으로 버려지는 폐기물 페라이트를 이용하여 저비용으로 $CO_2$분해가 가능한 폐기물 활용기술을 개발하였다.

Mn-Zn Ferrite의 자기적 특성에 관한 연구 (A Study on the magnetic properties of Mn-Zn Ferrite)

  • 김도환;최영지;권오흥
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.898-901
    • /
    • 2006
  • 본 논문에서는 저손실 Mn-Zn 페라이트의 제조공정과 첨가제가 코어의 자기적 특성에 미치는 영향을 조사하였다. 통신부품재료로 Mn-Zn 페라이트 개발에는 필요한 높은 포화자속밀도 및 투자율을 가진 고주파 특성이 양호하고 자기손실도 적은 재료의 필요하다. 따라서, Mn-Zn 페라이트의 고주파 자기 특성의 개선을 위해서는 결정입자의 소경화와 입자계층의 고저항화에 따른 와전류 손실의 억제 및 미세 구조의 균일화에 따른 히스테리시스 손실의 저감이 중요하다. 본 논문에서는 고성능, 저손실의 자심재료를 위해 Mn-Zn Ferrite에 $V_2O_5$$CaCo_3$를 첨가하였다. 조성은 MnO : ZnO : $Fe_2O_3$ = 21 : 10 : 69 mol%로 하였다. 이 시료를 $1250^{\circ}C$에서 3시간 소결하였다. 측정은 0.1MHz에서 초투자율을 측정하였으며, 전력손실은 50mT에서 100kHz 및 온도를 변화시켜 측정하였다.

  • PDF

$Mg_{1.9-2x}Mn_{0.05}Fe_{4x}O_{4+${\gamma}$}+2_{wt%} Al_2O_3$ 조성내 Fe량 변화에 따른 페라이트의 미세구조 및 자기적 특성 연구 (The Study on Microstructure and Magnetic Properties of Ferrite with Various Fe Contents in $Mg_{1.9-2x}Mn_{0.05}Fe_{4x}O_{4+${\gamma}$}+2_{wt%} Al_2O_3$)

  • 김성재;정명득;강대석
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.235-240
    • /
    • 1994
  • The electric and magnetic properties of Mg1.9-2xMn0.05Fe4xO4+${\gamma}$+2wt% Al2O3, and its microstructure have been investigated as a function of ferrite composition (x=0.45, 0.5, 0.55). The microstructure turned out to be independent on the ferrite composition. The resistivity was decreased with increasing Fe contents, whereas the Curie temperature decreased. Saturation magnetization was varied from 1741 to 2022 G with composition, and squareness ratio (SR), coercive force (BHc) were decreased and increased with increasing Fe contents respectively, so the sample which SR and BHc were 0.97 Oe and 1.49 Oe can be attainable at x=0.45.

  • PDF

The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method

  • Choi, Seung Han
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.371-375
    • /
    • 2018
  • The manganese-, nickel-, and aluminum-doped cobalt ferrite powders, $Mn_{0.2}Co_{0.8}Fe_2O_4$, $Ni_{0.2}Co_{0.8}Fe_2O_4$, and $Al_{0.2}CoFe_{1.8}O_4$, are fabricated by the sol-gel method, and the crystallographic and magnetic properties of the powders are studied in comparison with those of $CoFe_2O_4$. All the ferrite powders are nano-sized and have a single spinel structure with the lattice constant increasing in $Mn_{0.2}Co_{0.8}Fe_2O_4$ but decreasing in $Ni_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$. All the $M{\ddot{o}}ssbauer$ spectra are fitted as a superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The values of the magnetic hyperfine fields of $Ni_{0.2}Co_{0.8}Fe_2O_4$ are somewhat increased in the A and B sites, while those of $Mn_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$ are decreased. The variation of $M{\ddot{o}}ssbauer$ parameters is explained using the cation distribution equation, superexchange interaction and particle size. The hysteresis curves of the ferrite powders reveal a typical soft ferrite pattern. The variation in the values of saturation magnetization and coercivity are explained in terms of the site distributions, particle sizes and the spin magnetic moments of the doped ions.

습식법에 의한 고투자율 Mn-Zn Ferrite의 제조에 관한 연구 (Preparation of High Permeability Mn-Zn Ferrites by the Wet Method)

  • 이경희;이병하;허원도;황우연
    • 한국세라믹학회지
    • /
    • 제31권1호
    • /
    • pp.55-61
    • /
    • 1994
  • Mn-Zn ferrite powder was obtained by wet method that was to be coprecipitated the metal ions of Fe2+, Mn2+ and Zn2+ with alkali solution. The target composition of the ferrite powder was 52 mol% Fe2O3, 24 mol% MnO, and 24 mol% ZnO, that was based on the region of high permeability. And the other ferrite powder was prepared by the dry method that was to be mixed the metal oxides as the above chemical composition. The wet method was compared with dry method for the powder properties and the electromagnetic characteristics of sintered cores. The synthesized powder by wet method was smaller particle size, narrower particle distribution, and higher purity than that of dry method. The initial permeability of sintered sample prepared by the wet method was 14000~28000, on the other side, 9000~15500 in case of the dry method.

  • PDF

Crystallographic and Magnetic Properties of MnxFe3-xO4 Powders

  • Kwon, Woo Hyun;Lee, Jae-Gwang;Choi, Won Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • 제18권1호
    • /
    • pp.26-29
    • /
    • 2013
  • $Mn_xFe_{3-x}O_4$ powders have been fabricated by using sol-gel methods; their crystallographic and magnetic properties were investigated by using X-ray diffraction, scanning electron microscopy, M$\ddot{o}$ssbauer spectroscopy, and vibrating sample magnetometer. The $Mn_xFe_{3-x}O_4$ ferrite powders annealed at $500^{\circ}C$ had a single spinel structure regardless of the $Mn^{2+}$-doping amount and their lattice constants became larger as the $Mn^{2+}$ concentration was increased. Their Mossbauer spectra measured at room temperature were fitted with 2 Zeeman sextets due to the tetrahedral and octahedral sites of Fe ions, which made them ferrimagnetic. The magnetic behavior of $Mn_xFe_{3-x}O_4$ powders showed that the $Mn^{2+}$-doping amount made their saturation magnetization increase, but there were no severe effects on their coercivities. The saturation magnetization of the $Mn_xFe_{3-x}O_4$ powder varied from 38 emu/g to 70.0 emu/g and their minimum coercivity was 111.1 Oe.