• Title/Summary/Keyword: Mn concentration

Search Result 1,093, Processing Time 0.03 seconds

Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens

  • Qiu, Jialing;Lu, Xintao;Ma, Lianxiang;Hou, Chuanchuan;He, Junna;Liu, Bing;Yu, Dongyou;Lin, Gang;Xu, Jiming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.588-596
    • /
    • 2020
  • Objective: The objective of this study was to investigate the effects of low doses of organic trace minerals (iron, copper, manganese, and zinc) on productive performance, egg quality, yolk and tissue mineral retention, and fecal mineral excretion of laying hens during the late laying period. Methods: A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replicates per treatment and 15 birds per replicate. The dietary treatments included feeding a basal diet + inorganic trace minerals at commercial levels (CON), a basal diet + inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet + proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted for 56 days. Results: Compared to CON, ITM decreased (p<0.05) egg production, daily egg mass, albumen height, eggshell strength, yolk Fe concentration, serum alkaline phosphatase activity and total protein, and increased (p<0.05) egg loss and feed to egg ratio. Whereas with productive performance, egg quality, yolk mineral retention, and serum indices there were no differences (p>0.05) between CON and TRT. The concentrations of Fe and Mn in the tissue and tibia were changed notably in ITM relative to CON and TRT. Both ITM and TRT reduced (p<0.05) fecal mineral excretion compared to CON. Conclusion: These results indicate that dietary supplementation of low-dose organic trace minerals reduced fecal mineral excretion without negatively impacting hen performance and egg quality.

Chemical Characteristics and Source Apportionment ofPM2.5 in Seoul Metropolitan Area in 2010 (2010년도 서울시 대기 중 PM2.5의 성분특성 및 발생원 추정에 관한 연구)

  • Moon, Kwang-Joo;Park, Seung-Myung;Park, Jong-Sung;Song, In-Ho;Jang, Sung-Ki;Kim, Jong-Chun;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • This study is aimed to estimate the $PM_{2.5}$ source apportionment at Seoul intensive monitoring site located in Seoul metropolitan area. Time-resolved chemical compositions of $PM_{2.5}$ are measured in real time using ambient ion monitor, semi-continuous carbon monitor, and on-line XRF at Seoul intensive monitoring site in 2010. The mass concentration of $PM_{2.5}$ was simultaneously monitored with eight ionic species (${SO_4}^{2-}$, $NO_3{^-}$, $Cl^-$, $NH_4{^+}$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), two carbonaceous species (OC and EC), and fourteen elements (Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Pb) in 1-hr interval. The data sets were then analyzed using EPA PMF version 3 to identify sources and contributions to $PM_{2.5}$ mass. EPA PMF modeling identified eight PM2.5 sources, including soil dust, secondary sulfate, secondary nitrate, motor vehicle, coal combustion, oil combustion, biomass burning, and municipal incineration. This study found that the average $PM_{2.5}$ mass was apportioned to anthropogenic sources such as motor vehicle, fuel combustion, and biomass burning (61%) and secondary aerosols, including sulfate and nitrate (38%).

Concentration of Vanadium in Jeju Groundwater Using Reverse Osmosis Processes (역삼투 공정을 이용한 제주 지하수의 바나듐 농축)

  • Lee, Ho-Won;Moon, Soo-Hyoung;Ko, Kyung-Soo
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.241-249
    • /
    • 2008
  • This study is to concentrate vanadium in Jeju groundwater using reverse osmosis processes, and to utilize the concentrate for vanadium water. Groundwater samples were taken from Wahyul, Ayum, and Seogwipo groundwater wells with different in vanadium content each other. Their vanadiuln concentrations were 31.8, 44.5, and 53.0 ppb, respectively. The rejection coefficients of every component in groundwater were increased with the increase of TMP At the TMP of $8 kg_f/cm^2$, the rejection coefficients of vanadium, sodium, potassium, aluminium, iron, and barium were $97.4%{\sim}99.0%,\;97.7%{\sim}97.8%,\;98.0%{\sim}98.3%,\;94.8%{\sim}97.5%,\;88.0%{\sim}96.4.0%$, and $97.9{\sim}98.0%$, respectively. And those of magnesium, calcium, chromium, mauganese, and strontium in three groundwater were more than 99.0% at the same TMP. It was possible that vanadium contents of Wahyul, Ayum and Seogwipo groundwater were concentrated into 58.6, 118.9, and 165.1 ppb, respectively, by 6 stages treatment at the recovery ratio of 15%. And these concentrated water (vanadium water) did not exceed the permissible drinking water standards.

Purification and Characterization of Catechol 2,3-Dioxygenase from Recombinant Strain E. coli CNU312. (재조합균주 E. coli CNU312가 생산하는 Catechol 2,3-Dioxygenase의 정제 및 특성)

  • 임재윤;최경호;최병돈
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Catechol 2,3-dioxygenase was purified from recombinant strain E. coli CNU312 carrying the tomB gene which was cloned from toluene-degrading Burkholderia cepacia G4. The purification of this enzyme was performed by acetone precipitation, Sephadex G-75 chromatography, electrophoresis and electro-elution. The molecular weight of native enzyme was about 140.4 kDa and its subunit was estimated to be 35 kDa by SDS-PAGE. It means that this enzyme consists of four identical subunits. This enzyme was specifically active to catechol, and$K_(m)$ value and $V_(max)$value of this enzyme were 372.6 $\mu$M and 39.27 U/mg. This enzyme was weakly active to 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol, but rarely active to 2,3-DHBP. The optimal pH and temperature of the enzyme were pH 8.0 and $40^{\circ}C$. The enzyme was inhibited by $Co^(2+)$, $Mn^(2+)$, $Zn^(2+)$, $Fe^(2+)$, $Fe^(3+)$, and $Cu^(2+)$ ions, and was inactivated by adding the reagents such as N-bromosuccinimide, and $\rho$-diazobenzene sulfonic acid. The activity of catechol 2,3-dioxygenase was not stabilized by 10% concentration of organic solvents such as acetone, ethanol, isopropyl alcohol, ethyl acetate, and acetic acid, and by reducing agents such as 2-mercaptoethanol, dithiothreitol, and ascorbic acid. The enzyme was inactivated by the oxidizing agent $H_(2)$$O_(2)$, and by chelators such as EDTA, and ο-phenanthroline.

  • PDF

Effect of plasmid curing on the 2, 3-dihydroxybenzoic acid production and antibiotic resistance of Acinetobacter sp. B-W (Acinetobacter sp. B-W의 2, 3-dihydroxybenzoic acid 생산과 항생제 저항성에 미치는 플라스미드 제거 효과)

  • Kim, Kyoung-Ja;Kim, Jin-Woo;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.254-259
    • /
    • 2016
  • Acinetobacter sp. B-W producing siderophore, 2, 3-dihydroxybenzoic acid (DHB) was analyzed for plasmid content. Strain B-W harbored plasmid of 20 kb in size. Growth at $43^{\circ}C$ was effective in producing mutant cured of plasmid of strain B-W. This mutant lost the ability to produce 2, 3-DHB. Formation of siderophore halos on the chrome azurol S (CAS) agar medium was not detected by cured strain B-W. pHs of supernatants of wild type strain B-W and cured mutant grown in glucose and $MnSO_4$ containing medium at $28^{\circ}C$ for 3 days were 4.5 and 8.5, respectively. Antibiotic resistance against ampicillin, actinomycin D, bacitracin, lincomycin, and vancomycin was lost in cured mutant. Plasmid curing of strain B-W resulted in drastic reduction of minimal inhibitory concentration (MIC) of several antibiotics. E. coli $DH5{\alpha}$ was transformed with plasmid isolated from strain B-W. The transformant E. coli $DH5{\alpha}$ harbored a plasmid of the same molecular size as that of the donor plasmid. Transformant E. coli $DH5{\alpha}$ produced 2, 3-DHB and contained antibiotic resistant ability. Thus a single plasmid of 20 kb seemed to be involved in 2, 3-DHB production. Genes encoding resistance to antibiotics were also supposed to be located on this plasmid.

Affection of Citric Acid Production from Tapioca Alcoholic Distillery Waste by Using the Cell of Aspergillus niger (Tapioca주정증류 폐기물에서 Aspergillus niger 균주의 구연산 생산에 미치는 영향에 관한 연구)

  • Lee Yong-Hee;Lee Dong-Hwan;Chung Kyung-Tae;Suh Myung-Gyo;Roh Jong-Su;Lee Kook-Eui
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.337-343
    • /
    • 2005
  • Tapioca alcoholic distillery waste was utilized as dual purposes to produce citric acid and to reduce the amount of waste to be treated. Primarily an attempt was made to optimize the process conditions by Aspergillus niger in shake bath. The effects of pH, temperature, nitrogen and phosphorus sources on citric acid production were investigated. Maximum concentration of citric acid was made at temperature of $30^{\circ}C$ and pH of 4.3, while maximum cell dry weight was obtained at $35^{\circ}C$. The addition of methanol or ethanol to culture medium promoted citric acid production remarkably, but the addition of $NH_4NO_3,\;KH_2PO_4$ and Manganese as mineral source decreased the acid production.

Studies on the Nutritional Components of Purple Sweet Potato(Ipomoea batatas) (자색(紫色) 고구마의 영양성분에 관한 연구)

  • Kim, Sun-Young;Ryu, Chung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.819-825
    • /
    • 1995
  • Two sweet potato CV.(Ipomoea batatas) were examined, i.e. purple flesh sweet potato(PSP) and light yellow flesh sweet potato(LYSP) which varied in degree of sweetness. On a fresh weight basis, nitrogen free extract in cultivars ranged from $25.73{\sim}26.24%$ and PSP contained more crude fat than LYSP. Total amino acids of PSP and LYSP were 5676.57mg% and 4550.86mg%, respectively. Aspartic acid, serine, alanine and valine were the major components in sweet potatoes. Sulfur-containing amino acids are the first limiting amino acid in PSP. The major fatty acids in PSP and LYSP analyzed by GC were palmitic acid, linoleic acid. The content of the saturated fatty acid was less than that of the unsaturated fatty acid. Carbohydrate contents were $75.43{\sim}79.10%$ and neutral sugars contents were $67.22{\sim}64.85%$(dry wt). Two sweet potato CV. contained the most glucose of all neutral sugars. PSP contained 11.88% for uronic acid, 59.42% for starch. Free sugars of PSP(0.82%) was much less than that of LYSP(2.53%). The contents of thiamin, riboflavin and niacin were similar, and the ascorbic acid contents in PSP and LYSP were 63.4mg% and 48.7mg%(dry wt), respectively. Comparing the mineral content in PSP, K was the greatest element in concentration followed by mg, Ca, Na. The total dietary fiber(TDF) value was 13.43% in PSP, 9.79% in LYSP respectively. The ratio of soluble dietary fiber(SDF) content and insoluble dietary fiber(IDF) content to TDF content for PSP were 57.6%, 42.4%, respectively.

  • PDF

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Isolation and Characterization of a Novel Calcium/Calmodulin-Dependent Protein Kinase, AtCK, from Arabidopsis

  • Jeong, Jae Cheol;Shin, Dongjin;Lee, Jiyoung;Kang, Chang Ho;Baek, Dongwon;Cho, Moo Je;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.276-282
    • /
    • 2007
  • Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin ($Ca^{2+}/CaM$)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about $Ca^{2+}/CaM$-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative $Ca^{2+}$-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a $Ca^{2+}$-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM $Mn^{2+}$. The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other $Ca^{2+}/CaM$-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and $Ca^{2+}/CaM$-dependent protein kinase), increasing the concentration of calmodulin to more than $3{\mu}M$ suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis $Ca^{2+}/CaM$-dependent protein kinase which is presumably involved in CaM-mediated signaling.

Effect of Cooking Methods on Elemental Composition of Pumpkin (Cucurbitaceae spp.) (호박류의 조리방법에 따른 무기질 성분의 변화)

  • Hong, Young Shin;Kim, Kyong Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1195-1204
    • /
    • 2017
  • This study was designed to determine the effects of three cooking methods, boiling, microwave, and steaming, on elemental compositions of green pumpkin, zucchini, and sweet and ripened pumpkin. The cooking methods were carried out at 3, 5, and 10 min. The samples were then dried, crushed, and decomposed by microwave-assisted digestion method. Macro elements were analyzed by Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES), whereas ICP-Mass Spectrometer (ICP-MS) was used for micro elements determination. From the results, macro elements were present in the order of K, P, Ca, Mg, S, Fe, Zn, and Na in all analyzed pumpkins. Among micro elements, Mn, Cu, Rb, and Ba, were present at high levels. For the effects of cooking methods, boiling significantly reduced the concentrations of elements. Cooking time affected concentrations of elements in the same manner with large differences between elemental contents in samples cooked for 5 and 10 min. Regarding micro elements contents, both effects were not significant. Similar elemental compositions with different concentration levels in all pumpkin types were observed. Green pumpkin and ripened pumpkin showed high retention rates of inorganic components upon steaming, and zucchini and sweet pumpkin showed high retention rates upon microwave cooking. Conclusively, cooking method and time affect amounts of residual inorganic ingredients in pumpkin.