• Title/Summary/Keyword: Mn cluster

Search Result 55, Processing Time 0.022 seconds

Understanding Chemical Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern using Factor and Cluster Analyses (인자 및 군집분석을 통한 해안 LPG공동 유출수 및 지하수 수질특성의 이해)

  • Jo, Yun-Ju;Lee, Jin-Yong
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.599-608
    • /
    • 2009
  • This study was conducted to examine chemical characteristics and correlations among seepage water, subsurface waters and inland groundwater in and around a coastal underground LPG cavern using factor and cluster analyses. The study area is located in western coast of Incheon metropolitan city and is about 8 km off the coast. The LPG cavern storing propane and butane was built beneath artificially reclaimed island. Mean bathymetry is 8.5 m and maximum sea level change is 10 m. Water sampling was conducted in May and August, 2006 from 22 sampling points. Correlation analysis showed strong correlations among $Fe^{2+}$ and $Mn^{2+}$ (r=0.83~0.99), and Na and Cl (r=0.70~0.97), which indicated reductive dissolution of iron and manganese bearing minerals and seawater ingression effect, respectively. According to factor analysis, Factors 1 (May) and I (August) showed high loadings for parameters representing seawater ingression into the cavern and effect of submarine groundwater discharge, respectively while Factors 2 and IV showed high loadings for those representing oxidation condition (DO and ORP). Factors 4 and II have large positive loadings for $Fe^{2+}$ and $Mn^{2+}$. The increase of $Fe^{2+}$ and $Mn^{2+}$ was related to decomposition of organic matter and subsequent their dissolution under reduced condition. Cluster analysis showed the resulting 6 groups for May and 5 groups for August, which mainly included groups of inland groundwater, cavern seepage water, sea water and subsurface water in the LPG storage cavern. Subsurface water (Group 2 and Group III) around the underground storage cavern showed high EC and major ions contents, which represents the seawater effect. Cavern seepage water (Group 5 and Group II) showed a reduced condition (low DO and negative ORP) and higher levels of $Fe^{2+}$ and $Mn^{2+}$.

A Study on Electronic Structures of Spinel-Type Manganese Oxides for Lithium Ion Adsorbent using DV-Xα Molecular Orbital Method (DV-Xα 분자궤도법을 이용한 리튬이온 흡착제용 스피넬형 망간산화물의 전자상태에 관한 연구)

  • Kim, Yang-Su;Jeong, Gang-Seop;Lee, Jae-Cheon
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Discrete-variational(DV)-$X{\alpha}$ method was applied to investigate the electronic structures of spinel- type manganese oxide which is well known to the high performance adsorbent or cathode material for lithium ion. The results of DOS(density of states) and Mulliken population analysis showed that Li was nearly fully ionized and interactions between Mn and O were strong covalent bond. The effective charge of Li and Mn was +0.77 and +1.44 respectively and the overlap population between Mn and O was 0.252 in $LiMn_2O_4$. These results from DV-X$\alpha$ method were well coincided with the experimental result by XPS analysis and supported the feasibility of theoretical interpretation for the $LiMn_2O_4$ compound.

Technology Trends of Cathode Active Materials for Lithium Ion Battery (리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2012
  • With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.

Synthesis and Characterization of Air Stable σ-Bonded ortho-carborane Manganese Metal Complexes $1-[Mn(CO)_5]-2-R-1,2-closo-(σ-C_2B_{10}H_{10}$ and Their Conversion to the Stable ortho-carborane Substituted Fischer-type Carbene Compexes 1-[(CO

  • 김세진;김유혁;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.634-641
    • /
    • 1995
  • The metal-carbon σ-bond cluster complexes 1-Mn(CO)5-2-R-1,2-C2B10H10 (R=CH3 Ia, C6H5 Ib) have been prepared in good yields from readily available carboranyl lithium complexes, 1-Li+-2-R-1,2-C2B10H10- (R=CH3, C6H5), by direct reaction with (CO)5MnBr. These manganese metal complexes are rapidly converted to the corresponding manganese metal carbene complexes, 1-[(CO)4Mn=C(OCH3)(CH3)]-2-R-1,2-C2B10H10 (R=CH3 IIIa, C6H5 IIIb), via alkylation with methyllithium followed by O-methylation with CF3SO3CH3. The crystal structure of IIIb was determined by X-ray diffraction. Thus, complex IIIb crystallizes in the orthorhombic space group P212121 with cell parameters a=15.5537(5), b=19.0697(5), c=7.4286(3) Å, V=2203.4(1) Å3, and Z=4. Of the reflections measured a total of 3805 unique reflections with F2>3σ(F2) was used during subsequent structure refinement. Refinement converged to R1=0.053 and R2=0.091. Structural studies showed that the manganese atom had a slightly distorted pseudo-octahedral configuration about the metal center with the carbene and ortho-carborane occupying the equatorial plane cis-orientation to each other.

Data Aggregation and Transmission Mechanism for Energy Adaptive Node in Wireless Sensor Networks (무선 센서네트워크 환경에서 에너지를 고려한 노드 적응적 데이터 병합 및 전달 기법)

  • Cho, Young-Bok;You, Mi-Kyung;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.903-911
    • /
    • 2011
  • In this paper we proposed an energy adaptive data aggregation and transmission mechanism to solve the problem of energy limitation in wireless sensor networks (WSNs). Hierarchical structure methods are wildly used in WSNs to improve the energy efficiency. LEACH and TEEN protocols are the typical techniques. In these methods, all nodes, including nodes who have sensed data to transmit and nodes who haven't, are set frame timeslots in every round. MNs (member nodes) without sensed data keep active all the time, too. These strategies caused energy waste. Furthermore, if data collection in MNs is same to the previous transmission, it increases energy consumption. Most hierarchical structure protocols are developed based on LEACH. To solve the above problems, this paper proposed a method in which only MNs with sensed data can obtain allocated frame to transmit data. Moreover, if the MNs have same sensed data with previous, MNs turn to sleep mode. By this way redundant data transmission is avoided and aggregation in CH is lightened, too.

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

Source Characteristics of Particulate Trace Metals in Daegu Area (대구지역 부유분진 중 미량금속성분의 발생원 특성연구)

  • 최성우;송형도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.469-476
    • /
    • 2000
  • This study was performed to understand the behavior and source characteristics of particulate trace metals in Daegu area. To do this, total of 84 samples had been collected from January to December 1999. TSP (total suspended particulate matter) and PM-10(particulate matter with aerodynamic diameters less 10${\mu}{\textrm}{m}$) were collected by filters on portable air sampler, and in TSP and PM-10 were analyzed by ICP(Inductively Coupled Plasma Spectrometer) after preliminary treatment. The results were follow as: first, annul means of TSP and PM-10 concentration were 123 and 69$\mu\textrm{g}$/㎤ respectively. The concentration of TSP adn PM-10 were highest in winter season compared to other seasons. Second, the concentration of Al, Fe, Mn were higher in TSP than in PM-10, indicating that these metals are generally associate with natural contributions. Third, a hierarchical clustering technique was used to group 9 metals. The results from the cluster analysis of TSP and PM-10 shows a similar clustering pattern : Fe, Al in a group and the rest of the metals such as Ni, Cr, As, Mn, Cd, Pb, Zn in the other group. One group of metal such as Fe, Al is associated with natural sources such as soil and dust. The other is closely related to urban anthropogenic sources such as fuel combustion, incineration, and refuse burning, Finally, using Al as a reference element, enrichment factors were used for identifying the major particulate contributors. The enrichment factors of Al. Fe<10 (standard value of enrichment factor) were considered to have a significant dust and soil source and termed nonenriched. Ni, Cr, As, Mn, Cd, Pb, Zn》10 is enriched and has a significant which is contributed by athropogenic sources.

  • PDF

Spin-glass behavior in (A,B)-site deficient manganese perovskites

  • Lee, Kyu-Won;Phan, Manh-Huong;Yu, Seong-Cho;Nguyen Chau;Tho, Nguyen-Duc
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.150-151
    • /
    • 2003
  • In the past years, a giant magnetoresistance (GMR) effect found in perovskite-like structured materials has attracted considerable attention among scientists and manufacturers, since, a practical point of view, the capacity of producing magnetic and sensing sensors. In a stream of this interest, further efforts to understand the underlying mechanism that leads to the GMR effect relative to the correlation between transport and magnetic properties, have been extensively devoted. In these cases, spin-glass-like behaviors are ascribed to the frustration of random competing exchange interactions, namely the ferromagnetic double-exchange interaction between Co$\^$3+/ (or Mn$\^$3+/) and Co$\^$4+/(or Mn$\^$4+/) and the antiferromagnetic one like spins. Noticeably, the distinction of spin-glass region from cluster-glass one, involved in the remarkable changes in transport and magnetic properties at a critical value of doping concentration, was observed. Magnetic anomalies in zero-field-cooled (ZFC) magnetization as well as ac magnetic susceptibility below Curie temperature T$\sub$c/ and the charge/orbital fluctuation were also realized. In this work, we present a study of magnetic properties of a deficient manganese perovskites system of La$\sub$0.6/Sr$\sub$x/MnTi$\sub$y/O$_3$, and particularly provide its new magnetic phase diagram.

  • PDF

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti) (전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구)

  • Kang, J.H.;Jun, S.J.;Park, J.S.;Lee, Y.P.;Lee, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • Magnetic properties of transition metal doped $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity $H_c(T)$ was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.

Geochemistry of the Moisan Epithermal Gold-silver Deposit in Haenam Area (해남 모이산 천열수 금은광상의 지구화학적 특성)

  • Moon, Dong-Hyeok;Koh, Sang-Mo;Lee, Gill-Jae
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.491-503
    • /
    • 2010
  • Geochemical characteristics of the Moisan epithermal gold-silver deposit with total 140 samples in Haenam area, Jeollanamdo were studied by using multivariate statistical analysis (correlation analysis, factor analysis and cluster analysis). The correlation analysis reveals that Ag, Cu, Bi, Te are highly correlated with Au in the both non-mineralized and mineralized zone. It is resulted from the presence of Au-Ag bearing minerals (electrum, sylvanite, calaverite and stuezite) and non Au-Ag containing minerals (chalcopyrite, tellurobismuthite and bismuthinite). Mo shows relatively much higher correlation at the mineralized zone (0.615) than non-mineralized zone (0.269) which implies Mo content is strongly affected by Au-mineralization. While Mn, Cs, Fe, Se correlated with Au at the nonmineralized zone, they have negative correlation at the mineralized zone. Therefore, they seem to be eluviated elements from the host rock during gold mineralization. Sb is enriched during the gold mineralization showing high correlation at the mineralized zone and negative correlation at the non-mineralized zone. According to the factor analysis, Se, Ag, Cs, Te are the indicators of gold mineralization presence due to the strong affection of gold content in the non-mineralized zone. In the mineralized zone, on the other hand, Mo, Te and Sb, Cu are the indicators of gold and silver mineralization, respectively. While the cluster analysis reveals that Cd-Zn-Pb-S, Bi-Fe-Cu-Mn, Se-Te-Au-Cs-Ag, As-Sb-Ba are the similar behavior elements groups in the non-mineralized zone, Cd-Zn-Mn-Pb, Fe-S-Se, As-Bi-Cs, Ag-Sb-Cu, Au-Te-Mo are the similar behavior elements groups in the mineralized zone. Using multivariate statistical analysis as mentioned above makes it possible to compare the behavior of presented minerals and difference of geochemical characteristics between mineralized and non-mineralized zone. Therefore, it will be expected a useful tool on the similar type of mining exploration.