• Title/Summary/Keyword: Mixing length

Search Result 508, Processing Time 0.021 seconds

STANDARD STELLAR MODELS; $\alpha$ CEN A AND B

  • KIM YONG-CHEOL
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • The standard stellar models for $\alpha$ Cen A and B have been constructed without resorting to the arbitrary constraint of the Solar mixing length ratio. Assuming that the chemical compositions and the ages of the two stars are the same, series of models have been constructed. Using the observational constraints, [Z/X], we were able to constrain the number of the 'possible' models. We find that utilizing the observational constraints of [Z/X] the best models for $\alpha$ Cen system are with the initial Z = 0.03, X = 0.66$\~$0.67. In particular, the primary and the secondary stars may have the same mixing length ratio 1.6$\~$1.7, which is the same as that of the calibrated Solar model. And, the age of the system is about 5.4 Gyr. Finally, the large spacing of the p-modes is predicted to be 104 $\pm$ 4$\mu$Hz for $\alpha$ Cen A.

  • PDF

Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes (固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析)

  • 김재웅;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET (축대칭 환형 이젝터 제트의 내부 유동과 추력특성)

  • Park, G.H.;Kwon, S.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present study was 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 33 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET (축대칭 환형 이젝터 제트의 내부 유동과 추력특성)

  • Park, G.H.;Kwon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.166-170
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present studywas 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 34 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

  • PDF

A Study on the Effect of Mastication in Solution SBR (용액중합 SBR의 내림효과에 관한 연구)

  • Oh, Jeong-Hoon;Yoon, Dong-Il
    • Elastomers and Composites
    • /
    • v.27 no.4
    • /
    • pp.262-266
    • /
    • 1992
  • A number of tin-containing elastomers are produced commercially by Korea Kumho Petrochemical Co., Ltd. (KKPC) under the Kosyn Sol tradename. The effect of mastication of commercial and laboratory polymerized S-SBR has, been investigated using chemical mixer(ML-500), NMR, GPC and Mooney viscometer. Mastication of polymers containings coupling bonds is affected by the amount of stearic acid, the temperature of mixing and the time length of mixing.

  • PDF

Spray Characteristics of Swirl-coaxial Injector According to the Recess Length and Injection Pressure Variation (리세스 길이 및 분사압력 변이에 따른 스월 동축형 인젝터의 분무특성)

  • Bae, Seong Hun;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • This research is carried out for the performance evaluation of the injector that is one of the critical components of bipropellant-rocket-engine. Spray characteristics are investigated in detail according to the recess length and injection pressure on the swirl-coaxial-injector using gaseous methane and liquid oxygen as propellants. A visualization is conducted by the Schlieren photography that is composed of a light source, concave mirrors, knife, and high-speed-camera. A hollow-cone-shape is identified in the liquid spray that is spread only by inner injector and the spray angle is decreased due to the diminution of swirl strength in accordance with the increase of the length of injector orifice. When the injector sprays the liquid through the inner injector with the aid of gas through the outer injector, the spray angle in external mixing region tends to increase with rise of the recess length, while in internal mixing region, it is decreased. It is also confirmed that the same tendency of the spray angle with recess length appears irrespective of the injection pressure of liquid spray.

Effects of Design Parameters of Mixer Blades on Particle Mixing Performance (혼합기 블레이드 설계변수에 따른 입자의 혼합성능 연구)

  • Hwang, Seon-Pil;Park, Sanghyun;Sohn, Dongwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.363-370
    • /
    • 2017
  • This paper is concerned with the evaluation of mixing performance of a particle mixer, which consists of a vertical cylindrical vessel and a rotating impeller with several blades. We consider four design variables for the mixer blades, such as the angle, length, and number of blades, and the gap between the blades and the vessel bottom. The particle mixing process due to the impeller rotation is simulated using the discrete element method, and the mixing performance is quantitatively evaluated by introducing a mixing index. Analyzing the main effects and interactions of the four design variables through the design-of-experiments approach, it is concluded that the blade angle has the most dominant influence on the mixing performance whereas the gap has no significant influence. In addition, we determine the best combination of design parameters to maximize the mixing performance.

Micro/Nano Adhesion and Friction Properties of Mixed Self-assembled Monolayer (혼합 자기 조립 단분자막의 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2004
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and under micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that water contact angles of mixed SAMs were similar to those of pure SAMs. The morphology of coating surface was roughened as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain length, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.